Theorem (Alternate Interior Angles Theorem): If l and m are two lines cut by a transversal t in such a way that a pair of alternate interior angles is congruent, then $l \| m$.

Sketch a diagram.

Proof Let l and m be two lines cut by a transversal t in such a way that a pair of alternate interior angles is congruent.
[Show that $l \| m$.]

Choose points A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ as in the definitions of transversal and interior angles.

WLOG, let the congruent alternate interior angles be $\angle A^{\prime} B^{\prime} B$ and $\angle B^{\prime} B C$. i.e. $\angle A^{\prime} B^{\prime} B \cong \angle B^{\prime} B C$

BWOC, suppose l and m \qquad .

Then l and m must \qquad . Let D be this point of \qquad .

Case 1: D lies on the same side of t as C.
[Sketch a new picture.]

Then $\angle A^{\prime} B^{\prime} B$ is an \qquad for $\triangle B B^{\prime} D$.

Then $\mu\left(\angle A^{\prime} B^{\prime} B\right)>\mu\left(\angle B^{\prime} B D\right)$ by the \qquad .

But $\angle B^{\prime} B D=$ \qquad $\Rightarrow \mu\left(\angle A^{\prime} B^{\prime} B\right)>\mu(\square) \quad \rightarrow \leftarrow$ since \qquad .

Case 2: D lies on the same side of t as A.

Then by a similar argument $\mu\left(\angle B^{\prime} B C\right)>\mu\left(\angle D B^{\prime} B\right)=$ \qquad $\rightarrow \leftarrow$.

Both cases lead to a contradictions. Therefore, \qquad .

Corollary (Corresponding Angles Theorem): If l and m are two lines cut by a transversal t in such a way that a pair of corresponding angles is congruent, then $l \| m$.

Sketch a diagram.

Hint for proof: You could prove this in a manner similar to proof of the above theorem, but it's called a corollary for a reason: use the previous theorem to prove it.

PROOF

Corollary (Existence of Parallels Theorem): If l is a line and P a point with $P \notin l$, then there exists a line m with $P \in m$ and $l \| m$.

Sketch a diagram.

Hint for proof: Drop a perpendicular from P to l and remember you are proving a corollary to the Alternate Interior Angles Theorem.
Proof

Lemma 4.5.3 (Two-Angles Sum): If $\triangle A B C$ is any triangle, then $\mu(\angle C A B)+\mu(\angle A B C)<180^{\circ}$. Sketch a diagram.

Hint for proof: This follows almost immediately by the Exterior Angle Theorem.

PROOF

Lemma 4.5.4 (Adjacent Triangles Angle Sum): If $\triangle A B C$ is any triangle and E is distinct from B and C with $E \in \overline{B C}$, then $\sigma(\triangle A B E)+\sigma(\triangle E C A)=\sigma(\triangle A B C)+180^{\circ}$.

Sketch a diagram.

PROOF

Lemma 4.5.5 (Equal Angle Sum): If $\triangle A B C$ is any triangle then there exists a point $D \notin \overleftrightarrow{A B}$ such that $\sigma(\triangle A B D)=\sigma(\triangle A B C)$ and one of the interior angles of $\triangle A B D$ is less than or equal to $\frac{1}{2} \mu(\angle C A B)$. Sketch a diagram.

Hint for proof: Let M be the midpoint of $\overline{B C}$ and let $A * M * D$ with $A M=M D$.
Proof

These lemmas will all be used to prove the following theorem. Close your book and fill in the blank below. Then look up the statement of the theorem on p. 85 .

THEOREM (Saccheri-Legendre Theorem): If $\triangle A B C$ is any triangle, then $\sigma(\triangle A B C)$ \qquad 180°.

Is the conclusion of this theorem what you expected?

If not, why do you think it is different?

Proof Done together as a class.

Homework: Finish the proofs on this worksheet. Read the text of Sections 4.4-4.5 and summarize the main points.

