Some theorems we already have:

THEOREM 3.4.7 (EXISTENCE AND UNIQUENESS OF ANGLE BISECTORS) If A, B, and C are three noncollinear points, then there exists a unique angle bisector for $\angle BAC$.

THEOREM 3.5.9 If l is a line and P is a point on l, then there exists exactly one line m such that P lies on m and $m \perp l$.

THEOREM 3.5.11 (EXISTENCE AND UNIQUENESS OF PERPENDICULAR BISECTORS) If D and E are two distinct points, then there exists a unique perpendicular bisector for \overline{DE} .

Some new theorems:

THEOREM 4.1.3 (EXISTENCE AND UNIQUENESS OF PERPENDICULARS) For every line l and for every point P, there exists a unique line m such that P lies on m and $m \perp l$.

Sketch picture(s) and explain the difference or similarity between Theorems 3.5.9 and 4.1.3.

<u>TERMINOLOGY</u>: By 4.1.3 we can say, "drop a perpendicular from P to l." Also the point F that where the perpendicular intersects l is called the <u>foot</u> (of the perpendicular).

[Case 2 picture below.]

PROOF Let l be a line and P be a point.

<u>Case 1</u>: P is on l. Then the conclusion is true by Theorem _____3.5.9___.

<u>Case 2</u>: P is not on l. [Sketch a picture.] [Existence: Show m exists s.t. $\underline{P \in m}$ and $\underline{m \perp l}$.]

Let Q and Q' be two distinct points on l and define the angle $\angle Q'QP$.

By Angle Construction, there exists a point R on the opposite side of l from P such that $\angle Q'QP \cong \angle Q'QR$.

By Point Construction, let P' be a point on \overrightarrow{QR} such that $\overrightarrow{QP} \cong \overrightarrow{QP'}$.

Let m = PP'. [By construction, $P \in m$, but we still need to show $m \perp l$.]

By Plane Separation, $l \cap \overline{PP'} \neq \emptyset$. Let F be this point of intersection. Continued \longrightarrow

Uniqueness: [Homework.]

Subcase (a): F = Q. [Resketch (include R)]

Then $\angle Q'FP = \angle Q'QP$ and $\angle Q'FP' = \angle Q'QP'$ form a linear pair .

Thus $\mu(\angle Q'QP) + \mu(\angle Q'QP') = 180$.

But since $\angle Q'QP \cong \angle Q'QR$ and $\angle Q'QR = \angle Q'QP'$, then $\angle Q'QP \cong \angle Q'QP'$.

Two congruent angles that sum to 180 must each equal 90. Therefore $\underline{m \perp l}$.

Subcase (b): $F \neq Q$ and F lies on the ray $\overrightarrow{QQ'}$. [Resketch.]

Then $\angle PQF = \angle PQQ'$ and $\angle P'QF = \angle P'QQ'$.

Thus $\angle PQF \cong \angle P'QF$ since $\angle PQQ' \cong \angle RQQ' = \angle P'QQ'$.

Therefore, $\triangle FQP \cong \triangle FQP'$ by SAS.

Thus $\angle QFP\cong \underline{\qquad \angle QFP'}$ by triangle congruency.

But $\angle QFP$ and $\angle QFP'$ also form a _____inear pair___ .

Congruent angles that form a linear pair, must be right angles (by the same argument as in subcase (a).

Therefore $m \perp l$.

Subcase (c): $F \neq Q$ and F lies on the ray opposite $\overrightarrow{QQ'}$. [Resketch.]

Then $\angle PQF$ and $\angle PQQ'$ form a linear pair and are thus supplements.

Similarly $\angle P'QF$ and $\underline{\qquad}\angle P'QQ'$ form a linear pair and are supplements.

Therefore, since $\angle Q'QP \cong \angle Q'QP'$, then $\angle PQF \cong \angle P'QF$.

Thus, $\triangle FQP \cong \triangle FQP'$ by ____SAS___.

The rest of the proof is the same as subcase (b).

THEOREM 4.3.4 Let l be a line, let P be an external point, and let F be the foot of the perpendicular from P to l . If R is any point on l that is different from F , then $PR_{\underline{\hspace{1cm}}} > \underline{\hspace{1cm}} PF$.
Sketch a picture.
Restate (informal): The <u>shortest</u> distance from a point to a line is measured along the perpendicular.
PROOF Homework [Exercise 4.3.7] [Go on and come back to it, if time.]

<u>Def</u> If l is a line and P is a point, the distance from P to l, denoted d(P, l) is defined to be the distance from P to the foot of the perpendicular from P to l.

Theorem 4.3.6 (Pointwise Characterization of Angle Bisector) Let $A, B,$ and C be three noncollinear
points and let P be a point in the interior of $\angle BAC$. Then P lies on the angle bisector of $\angle BAC$ iff
$d(P, \overrightarrow{AB}) = d(P, \overrightarrow{AC}).$

Sketch a picture (one with P on the angle bisector and one with P not on it).

PROOF Homework [Exercise 4.3.8]

[Go on and come back to it, if time.]

THEOREM 4.3.7 (POINTWISE CHARACTERIZATION OF PERPENDICULAR BISECTOR) Let A and B be distinct points. A point P lies on the perpendicular bisector of \overline{AB} iff PA = PB.

Sketch a picture (one with P on the perpendicular bisector and one with P not on it).

PROOF Not assigned.

Summary of Homwork: Finish Uniqueness part of the proof on p.2; Section 4.3, p. 81: #(2, 3, 6, 5), 7, 8