Some theorems we already have:

Theorem 3.4.7 (Existence and Uniqueness of Angle Bisectors) If \(A, B, \) and \(C \) are three noncollinear points, then there exists a unique angle bisector for \(\angle BAC \).

Theorem 3.5.9 If \(l \) is a line and \(P \) is a point on \(l \), then there exists exactly one line \(m \) such that \(P \) lies on \(m \) and \(m \perp l \).

Theorem 3.5.11 (Existence and Uniqueness of Perpendicular Bisectors) If \(D \) and \(E \) are two distinct points, then there exists a unique perpendicular bisector for \(DE \).

Some new theorems:

Theorem 4.1.3 (Existence and Uniqueness of Perpendiculars) For every line \(l \) and for every point \(P \), there exists a unique line \(m \) such that \(P \) lies on \(m \) and \(m \perp l \).

Sketch picture(s) and explain the difference or similarity between Theorems 3.5.9 and 4.1.3.

Terminology: By 4.1.3 we can say, “drop a perpendicular from \(P \) to \(l \).” Also the point \(F \) that where the perpendicular intersects \(l \) is called the foot (of the perpendicular).

Proof Let \(l \) be a line and \(P \) be a point.

Case 1: \(P \) is on \(l \). Then the conclusion is true by Theorem 3.5.9.

Case 2: \(P \) is not on \(l \). [Sketch a picture.] [Existence: Show \(m \) exists s.t. \(P \in m \) and \(m \perp l \).]

Let \(Q \) and \(Q' \) be two distinct points on \(l \) and define the angle \(\angle Q'QP \).

By Angle Construction, there exists a point \(R \) on the opposite side of \(l \) from \(P \) such that \(\angle Q'QP \cong \angle Q'QR \).

By Point Construction, let \(P' \) be a point on \(QR \) such that \(QP \cong QQ' \).

Let \(m = \overrightarrow{PP'} \). [By construction, \(P \in m \), but we still need to show \(m \perp l \).]

By Plane Separation, \(l \cap PP' \neq \emptyset \). Let \(F \) be this point of intersection. Continued →
Subcase (a): $F = Q$. [Resketch (include R)]

Then $\angle Q'FP = \angle Q'QP$ and $\angle Q'FP' = \angle Q'QP'$ form a __linear pair__.

Thus $\mu(\angle Q'QP) + \mu(\angle Q'QP') = 180$.

But since $\angle Q'QP \cong \angle Q'QR$ and $\angle Q'QR = \angle Q'QP'$, then $\angle Q'QP \cong \angle Q'QP'$.

Two congruent angles that sum to 180 must each equal 90. Therefore __m \perp l__.

Subcase (b): $F \neq Q$ and F lies on the ray $\overrightarrow{QQ'}$. [Resketch.]

Then $\angle PQF = \angle PQQ'$ and $\angle P'QF = \angle P'QQ'$.

Thus $\angle PQF \cong \angle P'QF$ since $\angle PQQ' \cong \angle RQQ'$ = $\angle P'QQ'$.

Therefore, $\triangle FQP \cong \triangle FQP'$ by SAS.

Thus $\angle QFP \cong \angle QFP'$ by triangle congruency.

But $\angle QFP$ and $\angle QFP'$ also form a __linear pair__.

Congruent angles that form a linear pair, must be __right angles__ (by the same argument as in subcase (a)).

Therefore $m \perp l$.

Subcase (c): $F \neq Q$ and F lies on the ray opposite $\overrightarrow{QQ'}$. [Resketch.]

Then $\angle PQF$ and $\angle PQQ'$ form a linear pair and are thus __supplements__.

Similarly $\angle P'QF$ and $\angle P'QQ'$ form a linear pair and are supplements.

Therefore, since $\angle Q'QP \cong \angle Q'QP'$, then $\angle PQF \cong \angle P'QF$.

Thus, $\triangle FQP \cong \triangle FQP'$ by __SAS__.

The rest of the proof is the same as subcase (b). Uniqueness: [Homework.]
Theorem 4.3.4 Let l be a line, let P be an external point, and let F be the foot of the perpendicular from P to l. If R is any point on l that is different from F, then $PR > PF$.

Sketch a picture.

Restate (informal): The _______ distance from a point to a line is measured along the perpendicular.

Proof Homework [Exercise 4.3.7]

[Go on and come back to it, if time.]

Def If l is a line and P is a point, the distance from P to l, denoted $d(P,l)$ is defined to be the distance from P to the foot of the perpendicular from P to l.
THEOREM 4.3.6 (POIN TWISE CHARACTERIZATION OF ANGLE BISECTOR) Let \(A, B, \) and \(C \) be three noncollinear points and let \(P \) be a point in the interior of \(\angle BAC \). Then \(P \) lies on the angle bisector of \(\angle BAC \) iff
\[
d(P, \overrightarrow{AB}) = d(P, \overrightarrow{AC}).
\]
Sketch a picture (one with \(P \) on the angle bisector and one with \(P \) not on it).

PROOF Homework [Exercise 4.3.8] [Go on and come back to it, if time.]

THEOREM 4.3.7 (POINTWISE CHARACTERIZATION OF PERPEND ICULAR BISECTOR) Let \(A \) and \(B \) be distinct points. A point \(P \) lies on the perpendicular bisector of \(\overline{AB} \) iff \(PA = PB \).

Sketch a picture (one with \(P \) on the perpendicular bisector and one with \(P \) not on it).

PROOF Not assigned.

Summary of Homework: Finish Uniqueness part of the proof on p.2; Section 4.3, p. 81: \#(2, 3, 6, 5), 7, 8