Hypotenuse-Leg Theorem and SSA

 DEF
 A triangle is a
 triangle if one of the interior angles is a right angle. The side opposite the and the two sides adjacent to the right angle are called the

<u>THEOREM</u> (Hypotenuse-Leg Theorem) Let $\triangle ABC$ and $\triangle DEF$ be two right triangles with right angles at C and F. If $\overline{AB} \cong \overline{DE}$ and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

Sketch a diagram for this theorem. Continue to add to the picture as you prove the theorem.

<u>**PROOF**</u> Let $\triangle ABC$ and $\triangle DEF$ be two right triangles with right angles at C and F.

Let $\overline{AB} \cong \overline{DE}$ and $\overline{BC} \cong \overline{EF}$,

[Show $\triangle ABC \cong \triangle DEF.$]

Let G be a point on \overrightarrow{AC} such that $\overrightarrow{CG} \cong \overrightarrow{FD}$ (Point Construction Postulate).

Then $\angle BCG$ forms a _____ with $\angle BCA$.

Thus by the Linear Pair Theorem, $\mu(\angle BCG) =$ _____.

So $\triangle BCG \cong \triangle EFD$ by _____.

Since these two triangles are congruent, $\underline{\qquad} \cong \overline{DE}$.

Therefore $\overline{GB} \cong$ ______ from the given statements.

Hence $\triangle ABG$ is an ______ triangle.

Thus _____ by the Isosceles Triangle Theorem.

Therefore $\triangle ABC \cong \triangle DEF$. by ______.

Go back to the given statements. What type of triangle congruence is this theorem? (e.g. SAS, ASA, etc.)

So in the special case of triangles, _____ congruency holds.

See the board for diagrams of SSA possibilities and sketch them below.

From the picture, fill in the blanks to the theorem. [Hint for the second blank: Look at the diagram with both options for the placement of point B, call them B and B'. What type of triangle is $\triangle BCB'$?]

<u>THEOREM</u> (Side-Side-Angle (SSA)): If $\triangle ABC$ and $\triangle DEF$ are triangles such that $\angle BAC \cong \angle EDF, \overline{AC} \cong \overline{DF}$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC$ $\triangle DEF$ or $\angle ABC$ and $\angle DEF$ are

<u>PROOF</u> Let $\triangle ABC$ and $\triangle DEF$ be triangles such that $\angle BAC \cong \angle EDF$, $\overline{AC} \cong \overline{DF}$, and $\overline{BC} \cong \overline{EF}$.

By the Point-Construction Postulate, choose a point G on \overrightarrow{AB} such that AG = DE.

Case 1: G = B.

[Finish this case.]

Case 2: $G \neq B$. Then A * G * B or A * B * G. WLOG assume A * G * B otherwise we could restart the proof interchanging $\triangle ABC$ and $\triangle DEF$. [Finish the proof.]

So far, we've been sketching our pictures by making the known angle acute. Do you get the same possible triangles if the known angle is obtuse?