Def A triangle is a \qquad triangle if one of the interior angles is a right angle. The side opposite the right angle is called the \qquad and the two sides adjacent to the right angle are called the \qquad .

Theorem (Hypotenuse-Leg Theorem) Let $\triangle A B C$ and $\triangle D E F$ be two right triangles with right angles at C and F. If $\overline{A B} \cong \overline{D E}$ and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.

Sketch a diagram for this theorem. Continue to add to the picture as you prove the theorem.

Proof Let $\triangle A B C$ and $\triangle D E F$ be two right triangles with right angles at C and F.

Let $\overline{A B} \cong \overline{D E}$ and $\overline{B C} \cong \overline{E F}$,

Let G be a point on $\overrightarrow{A C}$ such that $\overline{C G} \cong \overline{F D}$ (Point Construction Postulate).

Then $\angle B C G$ forms a \qquad with $\angle B C A$.

Thus by the Linear Pair Theorem, $\mu(\angle B C G)=$ \qquad .

So $\triangle B C G \cong \triangle E F D$ by \qquad .

Since these two triangles are congruent, \qquad $\cong \overline{D E}$.

Therefore $\overline{G B} \cong$ \qquad from the given statements.

Hence $\triangle A B G$ is an \qquad triangle.

Thus \qquad by the Isosceles Triangle Theorem.

Therefore $\triangle A B C \cong \triangle D E F$. by \qquad .

Go back to the given statements. What type of triangle congruence is this theorem? (e.g. SAS, ASA, etc.)

So in the special case of \qquad triangles, \qquad congruency holds.

See the board for diagrams of SSA possibilities and sketch them below.

From the picture, fill in the blanks to the theorem. [Hint for the second blank: Look at the diagram with both options for the placement of point B, call them B and B^{\prime}. What type of triangle is $\triangle B C B^{\prime}$?]

Theorem (Side-Side-Angle (SSA)): If $\triangle A B C$ and $\triangle D E F$ are triangles such that $\angle B A C \cong \angle E D F, \overline{A C} \cong \overline{D F}$, and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C _\triangle D E F$ or $\angle A B C$ and $\angle D E F$ are \qquad .

By the Point-Construction Postulate, choose a point G on $\overrightarrow{A B}$ such that $A G=D E$.

Case 1: $G=B$.
[Finish this case.]

Case 2: $G \neq B$. Then $A * G * B$ or $A * B * G$. WLOG assume $A * G * B$ otherwise we could restart the proof interchanging $\triangle A B C$ and $\triangle D E F$.
[Finish the proof.]

So far, we've been sketching our pictures by making the known angle acute. Do you get the same possible triangles if the known angle is obtuse?

