[Close your books.]

1. ThEOREM (ASA): If $\triangle A B C$ and $\triangle D E F$ are triangles such that $\angle C A B \cong \angle F D E, \overline{A B} \cong \overline{D E}, \angle A B C \cong$ $\angle D E F$, then $\triangle A B C \cong \triangle D E F$.

Sketch a diagram for this theorem.
$\underline{\text { Proof }}$ Let $\triangle A B C$ and $\triangle D E F$ be defined as above.
[If we can show congruence of another side, then we can use \qquad SAS .]

Since the length $D F$ is a nonnegative number, then by the \qquad Point Construction Postulate , there exists a point G on $\overrightarrow{A C}$ such that $A G=$ \qquad .
\qquad .
[Finish the proof: Use SAS and eventually show $G=C$.]
2. Turn to page 65 . State the converse of the restatement of Theorem 3.6 .5 below.

Theorem (Converse to the Isosceles Triangle Theorem):

Sketch a diagram for this theorem.

Sketch a generic triangle (preferably not right, isosceles, or equilateral).

DEF Let $\triangle A B C$ be a triangle. The angles $\angle C A B, \angle A B C$, and $\angle B C A$ are called interior angles of the triangle.

On your picture above, extend the segments $\overline{A C}$ and $\overline{B C}$ to be rays $\overrightarrow{A C}$ and $\overrightarrow{B C}$. Label a point on the extension $\overrightarrow{A C}$ to be E and a point on the extension $\overrightarrow{B C}$ to be D.

What can you say about angles $\angle B C A$ and $\angle A C D$?
What can you say about angles $\angle A C B$ and $\angle B C E$?

Def Let $\triangle A B C$ be a triangle. An angle that forms a linear pair with one of the interior angles is called an exterior angle for the triangle. If the exterior angle forms a \qquad linear pair with the interior angle at one vertex, then the interior angles at the other two vertices are called remote interior angles.
3. Theorem (Exterior Angle Theorem). The measure of an exterior angle for a triangle is strictly greater than the measure of either remote interior angle.

Fill in the blanks to restate this theorem.

Restatement: Let $\triangle A B C$ be any triangle and let D lie on $\overleftrightarrow{B C}$ so that $\angle A C D$ is an exterior angle of the triangle. Then $\mu(\angle D C A)>\quad \mu(\angle B A C)$ and $\mu(\angle D C A)>\quad \mu(\angle A B C)$.

Proof Let $\triangle A B C$ be any triangle and let D lie on $\overleftrightarrow{B C}$ so that $\angle A C D$ is an exterior angle of the triangle.
Case 1: $[$ Show $\mu(\angle D C A)>\mu(\angle B A C)]$
Let E be the midpoint of $\overline{A C}$. (Existence of unique midpoint.)
Construct the point F so that E is the midpoint of $\overline{B F}$. (Point Construction Postulate.)
[Sketch a picture. Update the picture as you work through the proof.]

Thus, $\angle B E A$ and $\angle F E C$ form a \qquad vertical pair and are therefore \qquad congruent by the Vertical Angles Theorem.

Thus, $\triangle B E A \cong \triangle F E C$ by SAS.
So $\angle B A C \cong \quad F C A$, by definition of congruent triangles.
By construction, F is on the interior of $\angle D C A$.
Thus, $\mu(\angle F C A)<\mu(\angle D C A)$ by Betweenness for Rays.
By $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, we have $\mu(\angle B A C)<\mu(\angle D C A)$.

Case 2: [Show $\mu(\angle D C A)>\mu(\angle A B C)$] [Finish the proof as homework. Hint: Extend the side $\overline{A C}$ to create an angle congruent to $\angle A C D$.]

Homework

Finish the worksheet.
Section 4.1, p. 73 \#1
Sketch two triangles that show that SSA is not a valid triangle congruence condition.

