[Close your books.]

1. <u>THEOREM</u> (ASA): If $\triangle ABC$ and $\triangle DEF$ are triangles such that $\angle CAB \cong \angle FDE$, $\overline{AB} \cong \overline{DE}$, $\angle ABC \cong \angle DEF$, then $\triangle ABC \cong \triangle DEF$.

Sketch a diagram for this theorem.

 PROOF
 Let $\triangle ABC$ and $\triangle DEF$ be defined as above.
 [Show $\triangle ABC \cong \triangle DEF.$]

 [If we can show congruence of another side, then we can use ___________.]
 SAS_______.]

Since the length DF is a nonnegative number, then by the <u>Point Construction Postulate</u>, there exists a point G on \overrightarrow{AC} such that $AG = \underline{DF}$.

Therefore $\overline{AG} \cong \underline{DF}$.

[Finish the proof: Use SAS and eventually show G = C.]

2. Turn to page 65. State the converse of the <u>restatement</u> of Theorem 3.6.5 below.

<u>THEOREM</u> (Converse to the Isosceles Triangle Theorem):

Sketch a diagram for this theorem.

Proof

[Hint: Use ASA.]

Sketch a generic triangle (preferably not right, isosceles, or equilateral).

<u>DEF</u> Let $\triangle ABC$ be a triangle. The angles $\angle CAB, \angle ABC$, and $\angle BCA$ are called <u>interior</u> angles of the triangle.

On your picture above, extend the segments \overline{AC} and \overline{BC} to be rays \overline{AC} and \overline{BC} . Label a point on the extension \overline{AC} to be E and a point on the extension \overline{BC} to be D.

What can you say about angles $\angle BCA$ and $\angle ACD$?

What can you say about angles $\angle ACB$ and $\angle BCE$?

<u>DEF</u> Let $\triangle ABC$ be a triangle. An angle that forms a linear pair with one of the interior angles is called an <u>exterior</u> angle for the triangle. If the exterior angle forms a <u>linear</u> pair with the interior angle at one vertex, then the interior angles at the other two vertices are called remote interior angles.

What are the exterior angles for $\triangle ABC$ and vertex C?

What are the remote interior angles?

3. <u>THEOREM</u> (Exterior Angle Theorem). The measure of an exterior angle for a triangle is strictly greater than the measure of either remote interior angle.

Fill in the blanks to restate this theorem.

<u>RESTATEMENT</u>: Let $\triangle ABC$ be any triangle and let D lie on \overleftarrow{BC} so that $\angle ACD$ is an exterior angle of the triangle. Then $\mu(\angle DCA) > \mu(\angle BAC)$ and $\mu(\angle DCA) > \mu(\angle ABC)$.

<u>**PROOF**</u> Let $\triangle ABC$ be any triangle and let D lie on \overleftarrow{BC} so that $\angle ACD$ is an exterior angle of the triangle.

Case 1: [Show $\mu(\angle DCA) > \mu(\angle BAC)$]

Let E be the midpoint of \overline{AC} . (Existence of unique midpoint.)

Construct the point F so that E is the midpoint of \overline{BF} . (Point Construction Postulate.)

[Sketch a picture. Update the picture as you work through the proof.]

Thus, $\angle BEA$ and $\angle FEC$ form a <u>vertical</u> pair and are therefore <u>congruent</u> by the Vertical Angles Theorem.

Thus, $\triangle BEA \cong _ \triangle FEC _$ by SAS. So $\angle BAC \cong _ FCA _$, by definition of congruent triangles. (*) By construction, F is on the interior of $\angle DCA$. Thus, $\mu(\angle FCA) < \mu(\angle DCA)$ by Betweenness for Rays. (**)

By (*) and (**), we have $\mu(\angle BAC) < \mu(\angle DCA)$.

Case 2: [Show $\mu(\angle DCA) > \mu(\angle ABC)$] [Finish the proof as homework. Hint: Extend the side \overline{AC} to create an angle congruent to $\angle ACD$.]

Homework

Finish the worksheet. Section 4.1, p. 73 #1Sketch two triangles that show that SSA is not a valid triangle congruence condition.