[Close your books.]

1. <u>THEOREM</u> (The Z-Theorem): Let l be a line and let A and D be distinct points on l. If B and E are points on opposite sides of l, then $\overrightarrow{AB} \cap \overrightarrow{DE} = __{}$.

Sketch a diagram for this theorem and fill in the blank above. [Can you see why it is called the Z-Theorem?]

<u>PROOF</u> Let l be a line and let A and D be distinct points on l.

Also let B and E be on opposite sides of l.

By the (contrapositive of) the Ray Theorem, all points on \overrightarrow{AB} , except <u>A</u> lie in <u>one half-plane</u>	
determined by l ,	
Similarly, all points on \overrightarrow{DE} , except \underline{D} lie in <u>the other half-plane</u> determined by l .	
The half-planes do not intersect by the <u>Plane Separation</u> Postulate.	
Thus the only place the rays could intersect would be at <u>the endpoints</u> .	
But since A and D are <u>distinct</u> , $\overrightarrow{AB} \cap \overrightarrow{DE} = \emptyset$.	

2. <u>THEOREM</u> (The Crossbar Theorem): Let $\triangle ABC$ be a triangle. If a point *D* is in the interior of $\angle BAC$, then $\overrightarrow{AD} \cap \overrightarrow{BC} \neq \emptyset$.

Sketch a diagram for this theorem and fill in the blank above. [Can you see why it is called the Crossbar Theorem?]

Fill in the blanks to (informally) restate the Crossbar Theorem: If a ray is in the <u>interior</u> of one of the angles of a triangle, then the ray must intersect the <u>opposite</u> side of the triangle.

 \underline{PROOF} We'll do it later as a class.

3. <u>THEOREM</u> A point *D* is in the interior of $\angle BAC$ if and only if $\overrightarrow{AD} \cap \overrightarrow{BC} = \emptyset$. Sketch a diagram for this theorem and fill in the blank above.

Proof

⇒: Let D be a point in the interior of $\angle BAC$. Then \overrightarrow{AD} intersects \overrightarrow{BC} by the <u>Crossbar Theorem</u>. $\Leftarrow:$ Let $\overrightarrow{AD} \cap \overrightarrow{BC} \neq \emptyset$. Then let $E \in \overrightarrow{AD} \cap \overrightarrow{BC}$. Then B * E * C. Thus, by Theorem 3.3.10, <u>AB</u> * <u>AE</u> * <u>AC</u>. Thus, E is in the interior of $\angle \underline{BAC}$. Since $D \in \overrightarrow{AE}$, D is in the interior of $\angle BAC$ by the Ray Theorem.

4. <u>LEMMA</u> If C * A * B and D is in the interior of $\angle BAE$ then E is in the interior of $\angle DAC$. Sketch a diagram for this lemma.

<u>PROOF</u> Let C * A * B and let D be in the interior of $\angle BAE$. Since D is in the interior of $\angle BAE$, D and E are on the same side of \underline{AB} . But since $\overrightarrow{AB} = \underline{AC}$, D and E are on the same side of \underline{AC} . By the Crossbar Theorem, $\underline{AD} \cap \overline{BE\emptyset}$. Therefore E and B are on opposite sides of \underline{AD} . Since C * A * B, C and B are on <u>opposite sides</u> of \overrightarrow{AD} . Thus C and E are on the <u>same side</u> of AD by the Plane Separation Postulate. Therefore E is in the interior of $\angle DAC$.

5. <u>THEOREM</u> (The Linear Pair Theorem): If angles $\angle BAD$ and $\angle DAC$ form a linear pair, then $\angle BAD + \angle DAC = \underline{180^{\circ}}$.

Sketch a diagram for this theorem and fill in the blank above.

<u>PROOF</u> We'll do it later as a class.