AXIOM 5 (THE PROTRACTOR POSTULATE)

For every angle $\angle BAC$ there is a real number $\mu = \mu(\angle BAC)$ called the <u>measure of $\angle BAC$ </u> such that

1. $0^{\circ} \le \mu^{\circ} < 180^{\circ}$

2.
$$\mu = 0^{\circ}$$
 iff $\overrightarrow{AB} = \overrightarrow{AC}$

3. For each real number r where $0^{\circ} < r^{\circ} < 180^{\circ}$ and for each of the two half-planes determined by \overrightarrow{AB} , there exists a unique ray \overrightarrow{AE} such that E is in the half-plane and $\mu(\angle BAE) = r^{\circ}$

(Angle-Construction Postulate)

- 4. If the ray \overrightarrow{AD} is between the rays \overrightarrow{AB} and \overrightarrow{AC} , then $\mu(\angle BAC) + \mu(\angle DAC) = \mu(\angle BAC)$
 - (_____ Angle Addition Postulate ____)

<u>DEF</u> Two angles are **congruent** if they have the same angle measure

i.e.
$$\angle BAC \cong \angle EDF$$
 if $\mu(\angle BAC) = \mu(\angle EDF)$

Def

An angle with measure $\mu = 90^{\circ}$ is a right angle.

An angle with measure $\mu < 90^{\circ}$ is a <u>acute</u> angle.

An angle with measure $\mu > 90^{\circ}$ is a <u>obtuse</u> angle.

<u>LEMMA</u> If A, B, C, and D are four distinct points such that C and D are on the same side of \overrightarrow{AB} and D is not on \overrightarrow{AC} , then either C is in the interior of $\angle BAD$ or D is in the interior of $\angle BAC$.

PROOF Let A, B, C and D be defined as above. Suppose D is not in the interior of $\angle BAC$ [Show that C is in the interior of $\angle BAD$.] Then D and B are on opposite sides of \overrightarrow{AC} Therefore $\overline{BD} \cap \overleftrightarrow{AC} \neq -\emptyset$ by the Plane Separation Postulate. Let P be this **unique** point of intersection. Then P is between B and D and by theorem 3.3.10 (proved on previous worksheet), $\overrightarrow{AB} * \overrightarrow{AP} * \overrightarrow{AD}$ [Still need to show that $__C_$ is in the interior of $\angle BAD$.] Therefore, P is in the interior of $\angle BAD$. [How?: Show that $\overrightarrow{AP} = \overrightarrow{AC}$ P lies on \overleftarrow{AC} since it is the intersection point. Therefore \overrightarrow{AP} will equal \overrightarrow{AC} as long as they are not opposite rays. Since P is in the interior of $\angle BAD$, P and D are on <u>the same</u> side of \overrightarrow{AB} . Then P and C are also on the same side of \overrightarrow{AB} and hence, \overrightarrow{AP} and \overrightarrow{AC} cannot be opposite rays. $\Rightarrow \qquad \overrightarrow{AB} \ast \quad \overrightarrow{AC} \quad \ast \overrightarrow{AD} \quad \Rightarrow \quad \qquad$ Therefore $\overrightarrow{AP} = \overrightarrow{AC}$ C is in the interior of $\angle BAD$.

Why don't we have to prove that "If C is not in the interior of $\angle BAD$, then D is in the interior of BAC?"

PROOF Let A, B, C, and D be defined as stated above. $\Leftarrow: \text{Let } \overrightarrow{AD} \text{ be between } \overrightarrow{AB} \text{ and } \overrightarrow{AC}.$ [Show $\mu(\angle BAD) < \mu(\angle BAC)$] Then $\mu(\angle BAD) + \mu(\angle DAC) = \mu(\angle BAC)$ by the Protractor Postulate Part 4. Since $\mu(DAC) > 0 \Rightarrow \mu(\angle BAD) < \mu(\angle BAC)$ by the Protractor Postulate Parts 1 & 2 . [Show \overrightarrow{AD} is between \overrightarrow{AB} and \overrightarrow{AC} .] \Rightarrow : Let $\mu(\angle BAD) < \mu(\angle BAC)$ BWOC, suppose that \overrightarrow{AD} <u>is not between</u> \overrightarrow{AB} and \overrightarrow{AC} . Case 1: D lies on \overrightarrow{AC} Then $\mu(\angle BAD) = \mu(\angle BAC)$. (*) Case 2: D does not lie on \overrightarrow{AC} . Then by the previous Lemma, C is in the interior of $\angle BAD$. Thus, \overrightarrow{AC} is between \overrightarrow{AB} and \overrightarrow{AD} by definition of between for rays (Def 3.3.8). Then by the first half of this theorem, $\mu(\angle BAC) < \mu(\angle BAD)$ Combining the results of Case 1 and 2, we have that $\mu(\angle BAD) \geq \mu(\angle BAC)$ Therefore, \overrightarrow{AD} is between \overrightarrow{AB} and \overrightarrow{AC} .

<u>DEF</u> Let A, B, and C be three noncollinear points. A ray \overrightarrow{AD} is an <u>angle bisector</u> of $\angle BAC$ if D is in the interior of BAC and $\mu(\angle BAD) = \mu(\angle DAC)$. [Sketch]

<u>THEOREM</u> If A, B, and C are three noncollinear points, then there exists a unique angle bisector for $\angle BAC$. <u>PROOF</u> Let A, B, and C be three noncollinear points.

By the Protractor Postulate Part 1, $0^{\circ} \le \mu(\angle BAC) < 180^{\circ}$. Thus, $\underline{0^{\circ}} \le \frac{1}{2}\mu(\angle BAC) < \underline{90^{\circ}}$. Then by the Protractor Postulate Part 3, there exists a unique ray \overrightarrow{AE} such that $\mu(\angle BAE) = \frac{1}{2}\mu(\angle BAC)$ and E can be chosen to be on the same side of \overleftarrow{AB} as C.

Since $\mu(\angle BAE) = \frac{1}{2}\mu(\angle BAC) < \mu(\angle BAC) \Rightarrow \underline{\overrightarrow{AE}}$ is between \overrightarrow{AB} and \overrightarrow{AC} by the Betweenness Theorem for Rays. [continued on next page]

Then $\mu(\angle BAE) + \mu(\angle EAC) = \mu(\angle BAC)$ by <u>the Protractor Postulate Part 4</u> $\Rightarrow \frac{1}{2}\mu(\angle BAC) + \mu(\angle EAC) = \mu(\angle BAC) \Rightarrow \mu(\angle EAC) = \frac{1}{2}\mu(\angle BAC) \Rightarrow \mu(\angle BAE) = \mu(\angle EAC) = \frac{1}{2}\mu(\angle BAC).$ Therefore an \overrightarrow{AE} is an angle bisector for $\angle BAC$.

Therefore an *TLP* is an angle discussion for *ZDT*(C.

[Still need to show uniqueness. – do later as homework.]

<u>DEF</u> Two lines l and m are <u>perpendicular</u> if there exists a point A that lies on both l and m and there exist points $B \in l$ and $C \in m$ such that $\angle BAC$ is a right angle.

Denoted: $l \perp m$

[Sketch]

<u>DEF</u> A <u>perpendicular bisector</u> of \overline{AB} is a line l such that the midpoint of \overline{AB} lies on l and $\overleftrightarrow{AB} \perp l$. [Sketch]

<u>DEF</u> Two angles $\angle BAD$ and $\angle DAC$ form a <u>linear pair</u> if \overrightarrow{AB} and \overrightarrow{AC} are opposite rays. [Sketch]

<u>DEF</u> Two angles $\angle BAC$ and $\angle DEF$ are <u>supplementary</u> if $\mu(\angle BAC) + \mu(\angle DEF) = 180^{\circ}$. [Sketch]

<u>DEF</u> Angles $\angle BAC$ and $\angle DAE$ form a <u>vertical pair</u> (or are <u>vertical angles</u>) if \overrightarrow{AB} and \overrightarrow{AE} are opposite rays and \overrightarrow{AC} and \overrightarrow{AD} are opposite rays OR if \overrightarrow{AB} and \overrightarrow{AD} are opposite rays and \overrightarrow{AC} and \overrightarrow{AE} are opposite rays.

[Sketch]