Axiom 5 (The Protractor Postulate)
For every angle $\angle B A C$ there is a real number $\mu=\mu(\angle B A C)$ called the \quad measure of $\angle B A C$ such that

1. $0^{\circ} \leq \mu^{\circ}<180^{\circ}$
2. $\mu=0^{\circ}$ iff $\overrightarrow{A B}=\overrightarrow{A C}$
3. For each real number r where $0^{\circ}<r^{\circ}<180^{\circ}$ and for each of the two half-planes determined by $\overleftrightarrow{A B}$, there exists a unique ray $\overrightarrow{A E}$ such that E is in the half-plane and $\mu(\angle B A E)=r^{\circ}$
\qquad
(Angle-Construction Postulate
4. If the ray $\overrightarrow{A D}$ is between the rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$, then $\mu(\angle B A C)+\mu(\angle D A C)=\mu(\angle B A C)$
\qquad Angle Addition Postulate)

Def Two angles are congruent if they have the \qquad same angle measure
i.e. $\angle B A C \cong \angle E D F$ if $\quad \mu(\angle B A C)=\mu(\angle E D F)$

Def
An angle with measure $\mu=90^{\circ}$ is a right angle.

An angle with measure $\mu<90^{\circ}$ is a acute_ angle.

An angle with measure $\mu>90^{\circ}$ is a obtuse_angle.

LEMMA If A, B, C, and D are four distinct points such that C and D are on the same side of $\overleftrightarrow{A B}$ and D is not on $\overleftrightarrow{A C}$, then either C is in the interior of $\angle B A D$ or D is in the interior of $\angle B A C$.

Proof Let A, B, C and D be defined as above.
Suppose D is not in the interior of $\angle B A C$
[Show that C is in the interior of $\angle B A D$.]
Then D and B are on opposite sides of $\overleftrightarrow{A C}$
Therefore $\overline{B D} \cap \overleftrightarrow{A C} \quad \neq \quad \emptyset$ by the Plane Separation Postulate
Let P be this unique point of intersection.
Then P is between B and D and by theorem 3.3 .10 (proved on previous worksheet), $\overrightarrow{A B} * \overrightarrow{A P} * \overrightarrow{A D}$.
Therefore, P is in the interior of $\angle B A D$. [Still need to show that C is in the interior of $\angle B A D$.]
[How?: Show that $\overrightarrow{A P}=\overrightarrow{A C}$]
P lies on $\overleftrightarrow{A C}$ since it is the intersection point.
Therefore $\overrightarrow{A P}$ will equal $\overrightarrow{A C}$ as long as they are not opposite rays.
Since P is in the interior of $\angle B A D, P$ and D are on the same_ side of $\overleftrightarrow{A B}$.
Then P and C are also on the same side of $\overleftrightarrow{A B}$ and hence, $\overrightarrow{A P}$ and $\overrightarrow{A C}$ cannot be opposite rays.
Therefore $\overrightarrow{A P}=\overrightarrow{A C} \quad \Rightarrow \quad \overrightarrow{A B} * \overrightarrow{A C} * \overrightarrow{A D} \quad \Rightarrow \quad C$ is in the interior of $\angle B A D$.

Why don't we have to prove that "If C is not in the interior of $\angle B A D$, then D is in the interior of $B A C$?"

Theorem (Betweenness Theorem for Rays). Let A, B, C, and D be four distinct points such that C and D lie on the same side of $\overleftrightarrow{A B}$. Then $\mu(\angle B A D)<\mu(\angle B A C)$ iff $\overrightarrow{A D}$ is between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

Proof Let A, B, C, and D be defined as stated above.
\Leftarrow : Let $\overrightarrow{A D}$ be between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
[Show $\mu(\angle B A D)<\mu(\angle B A C)$]
Then $\quad \mu(\angle B A D)+\mu(\angle D A C)=\mu(\angle B A C) \quad$ by the Protractor Postulate Part 4.
Since $\mu(D A C)>0 \Rightarrow \mu(\angle B A D)<\mu(\angle B A C)$ by the Protractor Postulate Parts $1 \& 2$.
\Rightarrow : Let $\mu(\angle B A D)<\mu(\angle B A C)$
[Show $\overrightarrow{A D}$ is between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.]
BWOC, suppose that $\overrightarrow{A D} \quad$ is not between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
Case 1: D lies on $\overrightarrow{A C}$.
Then $\mu(\angle B A D)=\mu(\angle B A C)$.
Case 2: D does not lie on $\overrightarrow{A C}$.
Then by the previous Lemma, C is in the interior of \qquad $\angle B A D$.
Thus, $\overrightarrow{A C}$ is between $\overrightarrow{A B}$ and $\overrightarrow{A D}$ by definition of between for rays (Def 3.3.8).
Then by the first half of this theorem, $\mu(\angle B A C)<\mu(\angle B A D)$
Combining the results of Case 1 and 2, we have that $\mu(\angle B A D) \geq \mu(\angle B A C) \quad \rightarrow \leftarrow$
Therefore, $\overrightarrow{A D}$ is between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

DEF Let A, B, and C be three noncollinear points. A ray $\overrightarrow{A D}$ is an \qquad of $\angle B A C$ if D is in the interior of $B A C$ and $\mu(\angle B A D)=\mu(\angle D A C)$.
[Sketch]

THEOREM If A, B, and C are three noncollinear points, then there exists a unique angle bisector for $\angle B A C$.
Proof Let A, B, and C be three noncollinear points.
By the Protractor Postulate Part $1,0^{\circ} \leq \mu(\angle B A C)<180^{\circ}$. Thus, $\quad 0^{\circ} \leq \frac{1}{2} \mu(\angle B A C)<\underline{90^{\circ}}$.
Then by the Protractor Postulate Part 3, there exists a unique ray $\overrightarrow{A E}$ such that $\mu(\angle B A E)=\frac{1}{2} \mu(\angle B A C)$ and E can be chosen to be on the same side of $\overleftrightarrow{A B}$ as C.
Since $\mu(\angle B A E)=\frac{1}{2} \mu(\angle B A C)<\mu(\angle B A C) \Rightarrow \quad \overrightarrow{A E} \quad$ is between $\overrightarrow{A B}$ and $\overrightarrow{A C}$ by the Betweenness Theorem for Rays.

Then $\mu(\angle B A E)+\mu(\angle E A C)=\mu(\angle B A C)$ by \quad the Protractor Postulate Part 4
$\Rightarrow \frac{1}{2} \mu(\angle B A C)+\mu(\angle E A C)=\mu(\angle B A C) \Rightarrow \mu(\angle E A C)=\frac{1}{2} \mu(\angle B A C) \Rightarrow \mu(\angle B A E)=\mu(\angle E A C)=\frac{1}{2} \mu(\angle B A C)$.
Therefore an $\overrightarrow{A E}$ is an angle bisector for $\angle B A C$.
[Still need to show uniqueness. - do later as homework.]

Def Two lines l and m are perpendicular if there exists a point A that lies on both l and m and there exist points $B \in l$ and $C \in m$ such that $\angle B A C$ is a right angle.

Denoted: $l \perp m$
[Sketch]

Def A \qquad of $\overline{A B}$ is a line l such that the midpoint of $\overline{A B}$ lies on l and $\overleftrightarrow{A B} \perp l$ [Sketch]

Def Two angles $\angle B A D$ and $\angle D A C$ form a \qquad linear pair if $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are opposite rays. [Sketch]

Def Two angles $\angle B A C$ and $\angle D E F$ are \qquad supplementary if $\mu(\angle B A C)+\mu(\angle D E F)=180^{\circ}$.
[Sketch]

DEF Angles $\angle B A C$ and $\angle D A E$ form a vertical pair_(or are_ vertical angles) if $\overrightarrow{A B}$ and $\overrightarrow{A E}$ are opposite rays and $\overrightarrow{A C}$ and $\overrightarrow{A D}$ are opposite rays OR if $\overrightarrow{A B}$ and $\overrightarrow{A D}$ are opposite rays and $\overrightarrow{A C}$ and $\overrightarrow{A E}$ are opposite rays.
[Sketch]

