Theorem * If P is any point, then there are at least two distinct lines l and m such that P lies on both l and m.
$\underline{\text { PROOF Let }}$ \qquad [Show that there are at least two distinct lines s.t. P lies on both.]

By IA3_, there exists 3 noncollinear points_ A, B, and C.

Case 1: Suppose P is one of these 3 points.
WLOG^{\dagger}, let $P=A$

Then P and B are_ distinct points , and by IA1_, there exists a line l such that P and B lie on l.

Similarly $\quad P$ and $C _$are distinct points and there exists a line m such that $\quad P$ and C lie on m

Therefore P lies on both l and m.
[Still need to show that \qquad $l \neq m$.]

But $l \neq m$, otherwise $P=A, B$, and C would be \qquad collinear .

Therefore, there exists at least 2 distinct lines l and m such that P lies on both l and m.

Case 2: Suppose P is \qquad not one of these 3 points .

The $P \& A, P \& B$, and $P \& C$ are are three pairs of \qquad distinct points .

So by IA1 , there exist lines $l=\overleftrightarrow{P A}, m=\overleftrightarrow{P B}$, and $n=\overleftrightarrow{P C}$.

Hence P is on all three lines.
[Still need to show that they are distinct.]

These lines are all distinct , otherwise A, B, and C would be collinear.

Therefore, there exist at least 2 distinct lines such that P lies on both lines.

Continue working on the homework Section 2.6, p. 34: \#4, 5, 6, 7(newly added)

[^0]
[^0]: *2.6.4 (Exercise \#3) in the book.
 \dagger "Without Loss of Generality": You can use this method when the proof doesn't rely on the specifics of the different cases. For example, suppose $P=B$ instead. We could just relabel the points so that $P=A$. If you are uncertain whether to use WLOG, another method would be to do the proof for $P=A$ and then say a similar proof would hold for the other (sub)cases of $P=B$ and $P=C$.

