Proof Templates

Direct Proof

If A, then B

Proof

- 1. Start by assuming the hypothesis (If-condition) e.g. "Let A" "Suppose A" "Assume A" Remember what you want to prove: [Show B]
- Use Definitions, Axioms, Theorems, Algebra, etc. to write the next line(s).

Hint: Definitions almost always give the first line: Ask yourself "What does it mean to be A?"

Repeat Step 2 as much as needed:

- Each new line follows from previous one(s)
- Keep in mind where you are headed
- **3**. End with Conclusion (Then-condition) "Therefore B."

Example

Prove: If x + 10 is odd, then x is odd

Proof

- 1. Let x + 10 be odd.
- **2**. Then by definition, \exists integer k such that x + 10 = 2k + 1. [Show x = 2m + 1]

Thus,

- x = 2k + 1 10= 2k - 10 + 1 = 2(k - 5) + 1 = 2m + 1 for integer m = k - 5
- **3**. Therefore, by definition, x is odd.

Proof by Contrapositive (Direct Proof)

[Note $A \to B \equiv \sim B \to \sim A$]

<u>**PROOF**</u> (by contrapositive)

If A, then B

- 1. Start by assuming not B e.g. "Suppose not B"
- [Show not A]
- 2. Follow steps of Direct Proof to prove not A.
- 3. Therefore, the contrapositive "If A, then B" is also true.

Example

Prove: If x + 10 is odd, then x is odd

 \underline{PROOF} (by contrapositive)

- **1**. Suppose x is not odd. [Show x + 10 is not odd.]
- **2**. Then x is even and by definition, \exists integer k such that x = 2k

$$\Rightarrow x + 10 = 2k + 10$$

= 2(k + 5)
= 2m for integer m = k + 5

Thus, x+10 is even. That is, x + 10 is not odd. i.e. If x is not odd, then x + 10 is not odd

3. Therefore, the contrapositive If x + 10 is odd, then x is odd is also true. ■

[Show x is odd.]

Proof by Contradiction (Indirect Proof)

If A, then B

Proof

- **1**. Let the conditions of A be true.
- 2. BWOC, suppose not B.
- **3**. Use Definitions, Axioms, Theorems, etc. to create a logical argument until ...
 - You reach a contradiction $-\times$

[usually contradicts condition A in step 1]

4. "Therefore B"

Proof by Induction

Prove that a proposition P_n is true for all n(or all $n \ge m$)

Proof

Basis (n = 1 or n = m): Verify that the proposition holds for n = 1 or m.

Induction: Assume true for n = k. i.e. P_k is true.

[Show that it holds for n = k + 1

```
i.e. Show that P_{k+1} is true.]
```

- Start with one side of P_{k+1} statement
- Use algebra to manipulate so that you can....
- ... Use the Induction Assumption!!
- More manipulation, if needed to look like the other side of P_{k+1} statement.

Thus P_{k+1} is true. Therefore, by Mathematical Induction, the proposition P_n is true for all n (or $n \ge m$).

Example

If x + 10 is odd, then x is odd

<u>Proof</u>

- 1. Let x + 10 be odd.
- **2**. BWOC, suppose x is not odd (i.e. x is even).
- **3.** Then by definition, \exists integer k such that x = 2kThen

$$x + 10 = 2k + 10$$

= 2(k + 5)
= 2m for integer m = k + 5

Thus, x + 10 is even $-\!\!\!-\!\!\!\times$

4. Therefore, x must be odd.

Prove that $1 + 3 + 5 + \dots + (2n - 1) = n^2$ $\forall n \in \mathbb{N}$

Proof

Basis (n = 1): $1 = 1^2 \sqrt{}$

Induction: Assume true for n = k. i.e. $1 + 3 + 5 + \dots + (2k - 1) = k^2$ is true. [Show that $1 + 3 + \dots + (2k - 1) + [2(k + 1) - 1] = (k + 1)^2$] $1 + 3 + \dots + (2k - 1) + [2(k + 1) - 1]$

 $= k^{2} + [2(k+1) - 1]$ $= k^{2} + 2k + 2 - 1$ $= k^{2} + 2k + 1$ $= (k+1)^{2}$

i.e. $1 + 3 + \dots + (2k - 1) + [2(k + 1) - 1] = (k + 1)^2$

Thus it holds for
$$n = k + 1$$

Therefore, by Mathematical Induction, $1+3+5+\dots+(2n-1)=n^2 \quad \forall n \in \mathbb{N}.$

Disproof by Counterexample

Show that "If A, then B" is false by counterexample, by finding specific values that hold for A, but are false for B.

Hint: Counterexample values are often found at strange or interesting points, e.g. zero, negative numbers, end points, etc.

Example: If a < b, then ac < bc. Let a = 2, b = 3, and c = -4 so that a < b. But ac = 2(-4) = -8 < -12 = 3(-4) = bc.