1. Define the Four-Point Geometry as follows:

Points: A, B, C, D
Lines: $\quad\{A, B\},\{A, C\},\{A, D\},\{B, C\}\{B, D\},\{C, D\}$
Lie On: "Is an element of"

Verify that this is a model for incidence geometry. Sketch a diagram representing the relationships between the points.
2. Do you think Five-Point, Six-Point, ... n-Point Geometries (defined similar to Three-Point and Four-Point Geometries) will be models for incidence geometry? Why or why not?
3. Define the 3 -Student Geometry as follows:

Points: David, Eva, Fiona
Lines: Geometry Class, Calculus Class, Statistics Class
Lie On: "Is a member of a class"
Also given: David is only in Geometry and Calculus, Eva is only in Geometry and Statistics, and Fiona is only in Calculus and Statistics.

Verify that this is a model for incidence geometry.
4. Fano's Geometry is defined as follows:

Points: A, B, C, D, E, F, G
Lines: $\quad\{A, B, C\},\{C, D, E\},\{E, F, A\},\{A, G, D\}\{C, G, F\},\{E, G, B\},\{B, D, F\}$
Lie On: "Is an element of"

Determine whether this is a model for incidence geometry. If it is, is it finite or infinite?
5. The Klein Disk Geometry is defined as follows.

Points: Any point $(x, y) \in \mathbb{R}^{\nvdash}$ such that $x^{2}+y^{2}<1$
Lines: The part of a Euclidean line (i.e. satisfies $a x+b y+c=0$) that lies inside the circle $x^{2}+y^{2}=1$.
Lie On: "Lie on"
[A sketch may be helpful.]
Determine whether this is a model for incidence geometry. If it is, is it finite or infinite?

After answering problems \#4 \& 5, read Examples 2.2.7 and 2.2.10 in the book to make sure you understand them (and answered correctly).

Homework [Don't answer any part of the questions about the parallel postulates.]
Section 2.4, p. 23: \#1(isomorphism "same properties"), $2,3,5,11,12$ [Use examples and previous exercises], Read Section 2.4

