Name: _

Math 331 Foundations of Geometry - Crawford

Books, calculators, and notes (in any form) are <u>not</u> are allowed for problems #1-2. You may use your book for the proof of #3 – but you must turn in problems #1-2 first. Show all your work for credit. *Good luck!* Note: Scores will be scaled to 20 points after grading.

1. (8 pts) Let A * C * E. Also let B and D be on opposite sides of \overrightarrow{AC} with B * C * D. If $\mu(\angle BCE = 120^{\circ})$ and $\mu(\angle BAC) = 15^{\circ}$, then [Sketch a picture.]

(a). Fill in the blank or explain why there is not enough information to determine: $\mu(\angle ACB) =$ ______ (b). Fill in the blank or explain why there is not enough information to determine: $\mu(\angle ACD) =$ ______ (c). True or False or Not Enough Info to Determine: If $\mu(\angle CED) = 15^{\circ}$, then $\overleftarrow{AB} \parallel \overleftarrow{DE}$.

(d). True or False or Not Enough Info to Determine:

 $\mu(\angle ABC) = 105^{\circ}.$

2. (8 pts) Recall the definition of semiparallel: The opposite sides \overline{AB} and \overline{CD} of a quadrilateral $\Box ABCD$ are *semiparallel* if $\overline{AB} \cap \overleftarrow{CD} = \emptyset$ and $\overline{CD} \cap \overleftarrow{AB} = \emptyset$.

(a). Sketch a picture of a quadrilateral where \overline{AB} and \overline{CD} are semiparallel, but \overrightarrow{AB} and \overrightarrow{CD} are not parallel. Sketch subpicture(s) demonstrating how your quadrilateral satisfies the definition ($\overline{AB} \cap \overleftarrow{CD} = \emptyset$ and $\overline{CD} \cap \overleftarrow{AB} = \emptyset$).

(b). Sketch a picture of a quadrilateral where \overline{AB} and \overline{CD} are not semiparallel, and \overleftarrow{AB} and \overleftarrow{CD} are not parallel. Sketch subpicture(s) demonstrating how your quadrilateral violates the definition ($\overline{AB} \cap \overleftarrow{CD} = \emptyset$ and $\overline{CD} \cap \overleftarrow{AB} = \emptyset$).

(c). True or False:

If \overline{AB} and \overline{CD} are semiparallel, then \overleftrightarrow{AB} and \overleftrightarrow{CD} are parallel.

(d). True or False:

If \overrightarrow{AB} and \overrightarrow{CD} are parallel, then \overrightarrow{AB} and \overrightarrow{CD} are semiparallel.

If you wish to use your book, you must turn in problems #1-2 first.

<u>THEOREM</u> (Saccheri-Legendre Theorem). If $\triangle ABC$ is any triangle, then $\sigma(\triangle ABC) \leq 180^{\circ}$.

3. (8 pts) Prove the following *corollary* to the Saccheri-Legendre Theorem.

 $\underline{\text{COROLLARY}}$. The sum of the measures of two interior angles of a triangle is less than or equal to the measure of their remote exterior angle.