Name: _

Math 331 Foundations of Geometry - Crawford

Books, calculators, and notes (in any form) are <u>not</u> are allowed. Show all your work for credit. *Good luck!*

1. (10 pts) Determine whether the following statements are TRUE or FALSE. If it is false, give a counterexample or sketch a picture, to show why it is false.

(a). Let A, B, and C be three noncollinear points. A ray \overrightarrow{AD} is an angle bisector of $\angle BAC$ if $\mu(\angle BAD) = \mu(\angle DAC)$.

(b). Two angles $\angle BAC$ and $\angle EDF$ are equal if $\mu(\angle BAC) = \mu(\angle EDF)$.

(c). If A, B, C and D are four distinct points such that C and B are on opposite sides of \overrightarrow{AD} and $\mu(\angle BAD) < \mu(\angle BAC)$, then D is in the interior of $\angle BAC$.

(d). The measure μ of obtuse angles satisfies $90 < \mu \leq 180$.

Axiom 5 The Protractor Postulate

For every angle $\angle BAC$ there is a real number $\mu = \mu(\angle BAC)$ called the measure of $\angle BAC$ such that

- **1**. $0^{\circ} \le \mu^{\circ} < 180^{\circ}$.
- **2**. $\mu = 0^{\circ}$ iff $\overrightarrow{AB} = \overrightarrow{AC}$.
- **3.** For each real number r where $0^{\circ} < r^{\circ} < 180^{\circ}$ and for each of the two half-planes determined by \overleftrightarrow{AB} , there exists a unique ray \overrightarrow{AE} such that E is in the half-plane and $\mu(\angle BAE) = r^{\circ}$. (Angle-Construction Postulate)
- 4. If the ray \overrightarrow{AD} is between the rays \overrightarrow{AB} and \overrightarrow{AC} , then $\mu(\angle BAD) + \mu(\angle DAC) = \mu(\angle BAC)$. (Angle Addition Postulate)

2. (10 pts) Theorem: If $\angle BAC$ and $\angle EDF$ are distinct angles such that $\mu(\angle BAC) < \mu(\angle EDF)$, then there exists a unique ray \overrightarrow{DG} such that $\overrightarrow{DE} * \overrightarrow{DG} * \overrightarrow{DF}$ and $\mu(\angle BAC) = \mu(\angle EDG)$.

(a). Sketch a diagram for this theorem.

(b). Prove the theorem using only the Protractor Postulates and Betweenness for Rays.