Name:
Quiz 2
Math 331 Foundations of Geometry - Crawford
Books, calculators, and notes (in any form) are not are allowed. Show all your work for credit. Good luck!

1. (10 pts) Determine whether the following statements are True or False. If it is false, give a counterexample or sketch a picture, to show why it is false.
(a). Let A, B, and C be three noncollinear points. A ray $\overrightarrow{A D}$ is an angle bisector of $\angle B A C$ if $\mu(\angle B A D)=$ $\mu(\angle D A C)$.
(b). Two angles $\angle B A C$ and $\angle E D F$ are equal if $\mu(\angle B A C)=\mu(\angle E D F)$.
(c). If A, B, C and D are four distinct points such that C and B are on opposite sides of $\overleftrightarrow{A D}$ and $\mu(\angle B A D)<$ $\mu(\angle B A C)$, then D is in the interior of $\angle B A C$.
(d). The measure μ of obtuse angles satisfies $90<\mu \leq 180$.

Axiom 5 The Protractor Postulate

For every angle $\angle B A C$ there is a real number $\mu=\mu(\angle B A C)$ called the measure of $\angle B A C$ such that

1. $0^{\circ} \leq \mu^{\circ}<180^{\circ}$.
2. $\mu=0^{\circ}$ iff $\overrightarrow{A B}=\overrightarrow{A C}$.
3. For each real number r where $0^{\circ}<r^{\circ}<180^{\circ}$ and for each of the two half-planes determined by $\overleftrightarrow{A B}$, there exists a unique ray $\overrightarrow{A E}$ such that E is in the half-plane and $\mu(\angle B A E)=r^{\circ}$.

> (Angle-Construction Postulate)
4. If the ray $\overrightarrow{A D}$ is between the rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$, then $\mu(\angle B A D)+\mu(\angle D A C)=\mu(\angle B A C)$.
(Angle Addition Postulate)
2. (10 pts) Theorem: If $\angle B A C$ and $\angle E D F$ are distinct angles such that $\mu(\angle B A C)<\mu(\angle E D F)$, then there exists a unique ray $\overrightarrow{D G}$ such that $\overrightarrow{D E} * \overrightarrow{D G} * \overrightarrow{D F}$ and $\mu(\angle B A C)=\mu(\angle E D G)$.
(a). Sketch a diagram for this theorem.
(b). Prove the theorem using only the Protractor Postulates and Betweenness for Rays.

