Name:
Exam 2
Math 331 Foundations of Geometry - Crawford
Books and notes (in any form) are not allowed. You may use the provided list of Axioms, Postulates, and Theorems. Show all your work. Partial credit may be given for written work. Good Luck!

1. (18 pts) Given $\triangle A B C$, let D be a point such that $B * D * C$ and $A C=D C$. Also let $\mu(\angle C A D)=32^{\circ}$.
(a). Fill in the blank or explain why there is not enough information to determine:
(b). Fill in the blank or explain why there is not enough information to determine:
(c). True or False or Not Enough Information to Determine:
$\mu(\angle A C D)=$ \qquad -.
(d). True or False or Not Enough Information to Determine:
$A B>A C$.
2. (18 pts) Determine whether the following statements are True or False. If the statement is false, sketch a counterexample.
(a). If $\triangle A B C$ and $\triangle D E F$ are triangles such that $\angle B A C \cong \angle E D F, \overline{A C} \cong \overline{D F}$, and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong$ $\triangle D E F$.
(b). If $\square A B C D$ is a quadrilateral such that $A B=A D$ and $C B=C D$, then $\square A B C D$ is a convex quadrilateral.
(c). Let $\triangle X Y Z$ be an equilateral triangle. Let P, Q, and R be points such that $Y * X * P, X * Z * Q$, and $Z * Y * R$ and $X P=Z Q=Y R$. Then $\triangle P Q R$ is equilateral.
(d). The angle bisector of $\angle B A C$ intersects $\overline{B C}$ at its midpoint.
3. (6 pts) Determine whether the following statements are True or False. [No sketch or explanation necessary.]
(a). In a model for Neutral Geometry: Given a line l_{0} and an external point P_{0}, if there exists a line m through P_{0} such that $m \| l_{0}$, then the Euclidean Parallel Postulate must hold.
(b). If $\mu(\angle A C B)=\mu(\angle A B C)$, then $A B=A C$.
(c). If $A B+B C=A C$, then A, B, and C are collinear.
4. (12 pts) Fill in the blanks to prove Property 4 of Lambert Quadrilaterals (Theorem 4.8.11, part 4).

Proof: Let $\square A B C D$ be a Lambert quadrilateral with right angles at vertices A, B, and C. [Show $B C \leq A D$.]

BWOC, suppose \qquad

Then by point construction, construct a point E between B and C such that $B E=$ \qquad .

Then $\square A B E D$ is a \qquad quadrilateral by definition.

Then $\mu(\angle B E D) \leq 90^{\circ}$ by \qquad .

But $\angle B E D$ is an \qquad to $\triangle E C D$.

Therefore $\mu(\angle B E D)>$ \qquad by the Exterior Angle Theorem.

This is a contradiction $(\rightarrow \leftarrow)$ to \qquad

Therefore, \qquad .
5. (24 pts) Prove 2 of the following. Clearly state theorems and properties that you use.

Bonus: You may do (or attempt) all three options and each will be graded out of 12 points. Whichever two you score higher on will be your base grade. Any points from the third problem will be cut in third and added to your base grade.
(a). (Old) Use the Hinge Theorem to prove Theorem 4.2 .7 (SSS): If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$ and $\overline{C A} \cong \overline{F D}$, then $\triangle A B C \cong \triangle D E F$.
(b). (Old) Prove Lemma 4.5.3 (Two-Angles Sum): If $\triangle A B C$ is any triangle, then $\mu(\angle C A B)+\mu(\angle A B C)<180^{\circ}$.
(c). (New) Prove the following corollary to the Alternate Interior Angles Theorem: If l and l^{\prime} are lines cut by a transversal t in such a way that two nonalternating interior angles on the same side of t are supplements, then l is parallel to l^{\prime}.
6. (24 pts) The take-home portion of the exam is due Saturday, November 21 by 10 am . If you do not turn it in to me in person by Friday, November 21 at 3 pm , you may scan it and email it to me. It must be a pdf file, not jpg, and make sure it is legible before sending. The public computer lab in Daniels Hall has scanners that you can use.

