1. A company owns two factories which produce 3 different kitchen appliances: mixers, toasters, and food processors. Factory 1 produces 800 toasters, 100 mixers, and 200 food processors per day. Factory 2 produces 200 toasters, 100 mixers, and 700 food processors per day. The daily operating costs for these production lines are $\$ 8000$ for factory 1 and $\$ 15000$ for factory 2 . The company has received an order for 1600 toasters, 500 mixers, and 2000 food processors. Follow the steps below to set up a mathematical model (linear program) to determine the number of days each factory should operate to fill the orders at a minimum cost.
(a). Write down the decision variables in words: [Hint: What quantities are you trying to determine?]

Let $\begin{aligned} & x= \\ & y=\end{aligned}$
(b). Fill in the following table to summarize the production and order information.

	$x($	$y($	
Toasters			Ordered
Mixers			
Food Processors			
Daily Costs			

(c). If Factory 1 operates for x days, what are the operating costs? If Factory 2 operates for y days, what are the operating costs?

What is the total operating cost?
Do you want to minimize or maximize this cost?
(d). If Factory 1 operates for x days and Factory 2 operates for y days,

How many total toasters can they produce?
Does this total need to be \geq or \leq the number ordered?
How many total mixers can they produce?
Does this total need to be \geq or \leq the number ordered?

How many total food processors can they produce?
Does this total need to be \geq or \leq the number ordered?
(e). Summarize your work as a linear program. Include any additional reality (or domain) constraints.

Minimize

(f). Using all of the constraints, graph the inequalities and shade the solution region. [Use the given separate graph and try to draw the lines as accurately as possible.]
[Note: The solution region is called the feasible region because it gives the only possible values of x and y that will satisfy all the constraints.]
(g). Graph the line where the objective function equals $C=72,000$ [i.e. Graph the line \qquad $=72000$.]

Does it intersect the feasible region or lie outside of it?
How many possible values of x and y would be possible solutions for this value of C ?
2. A zoo has an open area that contains both zebras and gazelles. The animals are fed two types of food mixes, type A and B. Each day the area is supplied with 80 lbs of Food A and 160 lbs of Food B. Zebras require 2 lbs of Food A and 8 lbs of Food B each day. Gazelles need 5 lbs of Food A and 4 lbs of Food B each day. Follow the steps below to set up a mathematical model (linear program) to determine the maximum number of zebras and gazelles that the zoo can support.
(a). Write down the decision variables in words: [Hint: What quantities are you trying to determine?]

Let $\begin{aligned} & x= \\ & y=\end{aligned}$
(b). Fill in the following table to express the amount of food consumed.

	$\mathrm{x}(\quad)$	$\mathrm{y}(\quad)$	Delivered
Food A			
Food B			

(c). If there are x zebras and y gazelles, what is the total number of animals in this area?

Do you want to minimize or maximize this total?
(d). If there are x zebras and y gazelles,

How much of Food A do they consume? Does this total need to be \geq or \leq the amount delivered?

How much of Food B do they consume?
Does this total need to be \geq or \leq the amount delivered?
(e). Summarize your work as a linear program. Include any additional reality (or domain) constraints.

Maximize \qquad Subject to
(f). Using all of the constraints, graph the inequalities and shade the feasible region on the separate sheet of paper.
3. [Continuation of Problem 2] Since we want to maximize the objective $x+y$, let's set it equal to several values (C) and see if we can graphically determine the solution where it is largest.

For each value of C given in the table below:
(a). Fill in the second and third columns of the table.

Value of the Objective		(equivalently)	Number of Possible
C	$x+y=C$	$y=-x+C$	Solutions (x, y)
10	$x+y=10$	$y=-x+10$	
20			
25			
30			

(b). Graph the line $x+y=C$ (equivalently $y=-x+C$) on your graph and label it with the value of C. [Try to do this as accurately as possible.]
(c). Observe whether the line intersects the feasible region or lies outside of the feasible region.

Fill in the fourth column in the table by stating how many values of x and y would then be possible solutions for that value of C.
[You can state zero, one,... or infinitely many]
4. [Continuation] Based on the table above, what is the largest value of C that has possible solutions for (x, y) in the feasible region?
[This is your maximal solution for the objective.]
(a). What are the values of x and y for this value of C ?
[Hint: Which two lines intersect?]
(b). If you let C be one integer less than the answer above, explain why that will not give the maximal solution.
(c). If you let C be one integer greater than the answer above, explain why that will not give the maximal solution.
5. [Continuation] For the value of C found in \#4, determine the solution to this linear programming problem.
i.e. Find the maximum number of zebras (x) and gazelles (y) that the zoo can support.
[Hint: Look at your answer in \#4(a).]
6. Given the following linear program, repeat the steps of Problems\#2-5 above to graphically determine the maximum and minimum of the objective function.

Optimize $\quad 2 x+y \quad$ Subject to | $x+3 y$ | ≤ 6 |
| ---: | :--- |
| $x+y$ | ≤ 4 |
| x | ≥ 1 |
| y | ≥ 0 |

Value of the Objective	$2 x+y=C$	(equivalently) C	Number of Possible Solutions (x, y)
0			
1			
2			
3			
4			
5			
7			
8			

Which value of C is the largest possible and still gives values of x and y in the feasible region? What are the values of x and y for this value of C ?

Which value of C is the smallest possible and still gives values of x and y in the feasible region? What are the values of x and y for this value of C ?
7. Based on the work above, suggest a reasonable conclusion about the location of the solutions that optimize the objective function.

