The Normal Equations for the quadratic fit are

$$
\begin{aligned}
& c_{1} \sum x_{i}{ }^{4}+c_{2} \sum x_{i}{ }^{3}+c_{3} \sum x_{i}{ }^{2}=\sum x_{i}{ }^{2} y_{i} \\
& c_{1} \sum x_{i}{ }^{3}+c_{2} \sum x_{i}{ }^{2}+c_{3} \sum x_{i}=\sum x_{i} y_{i} \\
& c_{1} \sum x_{i}{ }^{2}+c_{2} \sum x_{i}+c_{3} m y_{i}
\end{aligned}
$$

Using Maple to solve them in general returns very messy equations:
For example,
$c_{1}=-\frac{\sum x_{i}{ }^{2} y_{i} m \sum x_{i}{ }^{2}-\sum x_{i}{ }^{2} y_{i}\left(\sum x_{i}\right)^{2}-\sum y_{i}\left(\sum x_{i}{ }^{2}\right)^{2}+\sum x_{i}{ }^{2} \sum_{i} x_{i} \sum x_{i} y_{i}-\sum x_{i}{ }^{3} \sum x_{i} y_{i} m+\sum x_{i}{ }^{3} \sum x_{i} \sum y_{i}}{-m \sum x_{i}{ }^{4} \sum x_{i}{ }^{2}+m\left(\sum x_{i}{ }^{3}\right)^{2}+\left(\sum x_{i}{ }^{2}\right)^{3}+\left(\sum_{i} x_{i}\right)^{2} \sum x_{i}{ }^{4}-2 \sum x_{i} \sum_{i} x_{i}{ }^{3} \sum x_{i}{ }^{2}}$

So in practice, it is better to compute the sums [Excel is good for this] for a given data set and use them in the normal equations. Then use your favorite method to solve the m equations m unknowns [Excel is not so great at this. Maple or RREF on your calculator is probably better].

Ex:

	x	y	x^{2}	x^{3}	x^{4}	$x y$	$x^{2} y$
	5.4	15.06					
	8.2	38.59					
	10.6	68.48					
	15.5	149.14					
	21.8	301.93					
	26.1	433.42					
sums	87.6	1006.62	1605.46	33763.54	765616.5	21329.66	485298.5

| $765616.4770 c_{1}+33763.536 c_{2}+1605.46 c_{3}$ | $=485298.4904$ | |
| :--- | :--- | :--- | :--- |
| $33763.536 c_{1}+1605.46 c_{2}$ | $+87.6 c_{3}$ | $=21329.656$ |
| $1605.46 c_{1}+87.6 c_{2}$ | $+6 c_{3}$ | $=1006.62$ |

$\left[\begin{array}{cccc}765616.4770 & 33763.536 & 1605.46 & 485298.4904 \\ 33763.536 & 1605.46 & 87.6 & 21329.656 \\ 1605.46 & 87.6 & 6 & 1006.62\end{array}\right]$

