1. Write the following systems of equations in matrix form $A \mathbf{x}=\mathbf{b}$. [Do not solve.]
(a). $\begin{aligned} 3 x+2 y & =6 \\ x-5 y & =4\end{aligned}$
(b). $\begin{aligned}-2 x-y & =0 \\ 4 x+3 y & =-1\end{aligned}$
2. Write the following matrix equations as a system of linear equations. [Do not solve.]
(a). $\left[\begin{array}{rr}2 & 1 \\ 4 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$
(b). $\left[\begin{array}{rrr}0 & -3 & 1 \\ 2 & 5 & -2 \\ 1 & 1 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}-1 \\ 2 \\ -2\end{array}\right]$
3. Is $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ an eigenvector of $\left[\begin{array}{ll}1 & -1 \\ 6 & -4\end{array}\right]$. If so, find the eigenvalue.
4. Is $\left[\begin{array}{r}3 \\ -2 \\ 1\end{array}\right]$ an eigenvector of $\left[\begin{array}{rrr}-4 & 3 & 3 \\ 2 & -3 & -2 \\ -1 & 0 & -2\end{array}\right]$. If so, find the eigenvalue.
5. Find the eigenvalues only of the given matrix.
(a). $\left[\begin{array}{rr}-4 & 2 \\ 3 & 1\end{array}\right]$
(b). $\left[\begin{array}{rrr}4 & 0 & -1 \\ 0 & 4 & -2 \\ 1 & 0 & 2\end{array}\right]$
6. Find an eigenvector corresponding to each of the listed eigenvalues for the given matrix.
(a). $A=\left[\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right], \lambda=1,3$
(b). $\quad A=\left[\begin{array}{rr}1 & -3 \\ -4 & 5\end{array}\right], \lambda=-1,7$
(c). $\quad A=\left[\begin{array}{rrr}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right], \lambda=1,2,3$
7. Using the steps given in class, find the eigenvalues and associated eigenvectors for the following matrices.
(a). $\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
(b). $\left[\begin{array}{rr}-4 & 2 \\ 6 & 7\end{array}\right]$
(c). $\left[\begin{array}{ll}8 & 2 \\ 3 & 3\end{array}\right]$
