Recall, the simplest model assumed that the change in the amount to be proportional to the amount present,
i.e. $\Delta a_{n}=k a_{n}$
which led to the model $a_{n+1}=a_{n}+k a_{n}=(1+k) a_{n}$.
Let $r=1+k$ to obtain the general dynamical system: \square
$\begin{aligned} a_{n+1}= & r a_{n} \\ a_{0} & \text { given }\end{aligned}$

1. $\underline{\mathbf{r}>1}$ (e.g. Unconstrained Aphid Population Example): $\begin{aligned} a_{n+1} & =1.6198 a_{n} \\ a_{0} & =34,285\end{aligned}$

Iterate the following system and sketch the graph. What happens to the size of the aphid population as time goes on? [i.e. What is the limit as $n \rightarrow \infty$?]
2. $\underline{\mathbf{r}=1}$ Iterate the following system and sketch the graph. Describe what happens as $n \rightarrow \infty . \begin{aligned} a_{n+1} & =a_{n} \\ a_{0} & =5\end{aligned}$
3. $\mathbf{0}<\mathbf{r}<\mathbf{1}$ (e.g. Ibuprofen Example): $\begin{aligned} a_{n+1} & =0.8 a_{n} \\ a_{0} & =400\end{aligned}$

Iterate the following system and sketch the graph. What happens to the amount of ibuprofen in one's system as time goes on? [i.e. What is the limit as $n \rightarrow \infty$?]
4. $\underline{\mathbf{r}=\mathbf{0}}$ Iterate the following system and sketch the graph. Describe what happens as $n \rightarrow \infty . \begin{aligned} a_{n+1} & =0 \\ a_{0} & =\end{aligned}$
5. What if \mathbf{r} is negative? (rhetorical)

Iterate the following systems up to $n=5$ and sketch a graph of the iterations. Then describe the behavior.
(a). $\begin{aligned} &-\mathbf{1}<\mathbf{r}<\mathbf{0} \\ & a_{n+1}=-\frac{2}{3} a_{n} \\ & a_{0}=18\end{aligned}$
(b). $\underline{\mathbf{r}=-\mathbf{1}} \begin{aligned} a_{n+1} & =-a_{n} \\ a_{0} & =3\end{aligned}$
(c). $\underline{\mathbf{r}<-\mathbf{1}} \begin{aligned} a_{n+1} & =-2 a_{n} \\ a_{0} & =1\end{aligned}$
6. Summarize the results for the linear dynamical system of the form: $a_{n+1}=r a_{n}$ (with a_{0} given)

r	Behavior		
$r>1$		(e.g. constant, growth, decay, oscillation)	Limiting Value or DNE
$r=1$		Note:	
$0<r<1$		If $\|r\|<1$ solutions	
$r=0$			
$-1<r<0$			decay to 0
$r=-1$			If $\|r\|>1$ solutions
$r<-1$			are unbounded

