Recall, the simplest model assumed that the change in the amount to be proportional to the amount present,

i.e. $\Delta a_n = k a_n$

which led to the model $a_{n+1} = a_n + ka_n = (1+k)a_n$.

 $= ra_n$ a_{n+1} Let r = 1 + k to obtain the general dynamical system: given a_0 $a_{n+1} = 1.6198a_n$ **1.** $\underline{\mathbf{r}} > \underline{\mathbf{1}}$ (e.g. Unconstrained Aphid Population Example):

Iterate the following system and sketch the graph. What happens to the size of the aphid population as time goes on? [i.e. What is the limit as $n \to \infty$?]

= 34,285

 a_0

2. $\underline{\mathbf{r}} = \underline{\mathbf{1}}$ Iterate the following system and sketch the graph. Describe what happens as $n \to \infty$. $\begin{array}{c} a_{n+1} = a_n \\ a_0 = 5 \end{array}$

3. $\mathbf{0} < \mathbf{r} < \mathbf{1}$ (e.g. Ibuprofen Example): $a_{n+1} = 0.8a_n$ $a_0 = 400$

Iterate the following system and sketch the graph. What happens to the amount of ibuprofen in one's system as time goes on? [i.e. What is the limit as $n \to \infty$?]

0 4. $\underline{\mathbf{r}} = \mathbf{0}$ Iterate the following system and sketch the graph. Describe what happens as $n \to \infty$. a_0 5

Page 2

•

5. What if **r** is negative? (rhetorical)

Iterate the following systems up to n = 5 and sketch a graph of the iterations. Then describe the behavior.

(a).
$$\underline{-1 < \mathbf{r} < \mathbf{0}} \quad a_{n+1} = -\frac{2}{3}a_n \\ a_0 = 18$$

(b).
$$\mathbf{r} = -\mathbf{1} \quad \begin{array}{ccc} a_{n+1} & = & -a_n \\ a_0 & = & 3 \end{array}$$

(c).
$$\mathbf{r} < -\mathbf{1}$$
 $a_{n+1} = -2a_n$
 $a_0 = 1$

	Behavior		
r	(e.g. constant, growth, decay, oscillation)	Limiting Value or DNE	
r > 1			
r = 1			Note:
0 < r < 1			If $ r < 1$ solutions decay to 0 .
r = 0			
-1 < r < 0			
r = -1			If $ r > 1$ solutions
r < -1			are unbounded

6. Summarize the results for the linear dynamical system of the form: $a_{n+1} = ra_n$ (with a_0 given)