THEOREM For all integers a and b, if a and b are positive and a divides b, then $a \leq b$.

Proof Let a and b be positive integers and let a divide b. [Show $a \leq b$.]

By definition of divisibility , there exists an integer k such that $\quad b=a k$.

Then since b is positive, then $a k$ is \qquad positive .

Then by Theorem T25 (App. A), since $a k>0$ and a is positive, then \qquad k is also positive .

Since k is a positive integer, it follows that $1 \leq k$.

Multiplying both sides by a, which we know is positive, gives
$a \leq a k \quad$ by T20 (App. A).

Therefore, $a \leq b$ by substitution.

Theorem The only divisors of 1 are 1 and -1 .
$\underline{\text { Proof }}$ Let m be a divisor_ of $1 . \quad$ [Show that m must be $\quad 1$ or -1 .]

Then by definition of divisibility, m is an \qquad integer and there exists an integer k such that $1=$ \qquad $m k$.

By Theorem T25 (App. A), either m and k are both \qquad or they are both \qquad .

Case 1: m and k are both positive.

Since m and 1 are positive integers and m divides 1, by the previous theorem, \qquad $m \leq 1$.

The only way for positive integer to be less than or equal to 1 , is for the integer to be \qquad 1 .

Therefore, $m=1$.

Case 2: m and k are both \qquad negative .

Then by Theorem T12 (App. A), $(-m)(-k)=$ \qquad $=1$.

Thus, by definition, $-m$ is a divisor of \qquad .

Also, since m is negative, $-m$ is \qquad positive .

Hence $-m$ is a positive divisor of 1 , and by the previous theorem, \qquad ≤ 1.

By the same reasoning as above, $-m=1$ and therefore, \qquad $m=-1$.

Since these are the only two possibilities, $m=1$ or $m=-1$, then the only divisors of 1 are \qquad 1 or -1

