DEF If p and q are statement variables, the conditional of q by p is "If p then q " or " p implies q " and denoted $p \rightarrow q$. It is false when p is true and q is false; otherwise it is true.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Ex: Use a truth table to show that $p \vee q \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$.

p	q	r	$p \vee q$	$p \rightarrow r$	$q \rightarrow r$	$p \vee q \rightarrow r$	$(p \rightarrow r) \wedge(q \rightarrow r)$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	T					
F	F	F					

Ex: Rewrite the following statement in $i f$-then form: You pay tuition or you can't attend classes.

Observation from the previous example: $p \rightarrow q \equiv \sim p \vee q$

Construct a truth table to verify the logical equivalence of the above observation:

p	q	$\sim p$	$p \rightarrow q$	$\sim p \vee q$
T	T			
T	F			
F	T			
F	F			

Ex: Use logic operations to find a statement equivalent to the negation of a conditional statement.
From the example above:
$p \rightarrow q \equiv \sim p \vee q$

Ex: Write the negation of the following statement:
If it is May 22, then we have the Final Exam.
Negation:

Def The \qquad contrapositive of a conditional statement of the form "If p then q " is \qquad
i.e. The \qquad of $p \rightarrow q$ is \qquad

Important: A conditional statement is \qquad logically equivalent to its contrapositive. [Homework problem will show.]

Ex: Write the contrapositive of the following statement:
If I go to the gym, then I stretch.
Contrapositive:

DeF Given the conditional statement "If p then q ",

- The converse is \qquad "If q then p. ."
i.e. The converse of $p \rightarrow q$ is \qquad $q \rightarrow p$.
- The INVERSE is "If $\sim p$ then $\sim q$." i.e. The inverse of $p \rightarrow q$ is \qquad .

Important: The converse and inverse are NOT logically equivalent to the original conditional statement.

But, they are logically equivalent to _each other__since they are the \qquad contrapositive of each other.

Ex: Write the converse and inverse of the following statement:
If I go to the gym, then I stretch.

Converse:

Inverse:

The statement " p only if q " means \qquad "If not q then not p." (symbolically: \qquad
which is equivalent to \qquad since it is the \qquad contrapositive .

Be careful, it is not saying \qquad " q implies p " .

The expression \qquad " p if q " is really $q \rightarrow p$.

Ex: Use the contrapositive to rewrite the following in 2 ways:

DEF The biconditional of p and q is \qquad " p if, and only if q " , denoted $p \leftrightarrow q$. It is true if both p and q have the same truth values and false otherwise.

Note: $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
[See book for truth table.]

DeF r is a sufficient condition for s means \qquad .
i.e., $\quad r \rightarrow s$

DEF r is a necessary condition for s means \qquad "if not r, then not s " .

Which has the equivalent contrapositive: "if s, then r " $s \rightarrow r$.

DEF r is a necessary and sufficient condition for s
means \qquad " r iff s " .

$$
\text { i.e., } \quad \sim r \leftrightarrow \sim s
$$

Ex: If you travel internationally, then you have a passport.

Rewrite using "sufficient":

Rewrite using "necessary":

Ex: Rewrite the following statement in "if-then" form in 2 ways using the contrapositive.

Having 2 sides of equal length is necessary for a triangle to be isosceles.
1.
2.

