<u>DEF</u> If p and q are statement variables, the conditional of q by p is "If p then q" or "p implies q" and denoted $p \to q$. It is false when p is true and q is false; otherwise it is true.

<u>Ex</u>: Use a truth table to show that $p \lor q \to r \equiv (p \to r) \land (q \to r)$.

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$\mid p \lor q \to r \mid$	$ (p \to r) \land (q \to r)$
Т	Т	Т					
Т	Т	\mathbf{F}					
Т	\mathbf{F}	Т					
Т	\mathbf{F}	F					
\mathbf{F}	Т	Т					
\mathbf{F}	Т	F					
\mathbf{F}	\mathbf{F}	Т					
\mathbf{F}	\mathbf{F}	F					

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
\mathbf{F}	Т	Т
\mathbf{F}	F	Т

Ex: Rewrite the following statement in *if-then* form:

You pay tuition or you can't attend classes.

Observation from the previous example: $p \to q \equiv \sim p \lor q$

Construct a truth table to verify the logical equivalence of the above observation:

p	q	$\sim p$	$p \rightarrow q$	$\sim p \lor q$
Т	Т			
Т	F			
\mathbf{F}	T			
F	F			

 $\underline{\mathbf{Ex}}$: Use logic operations to find a statement equivalent to the negation of a conditional statement. From the example above:

 $p \to q \equiv \mathop{\sim} p \lor q$

<u>Ex</u>: Write the negation of the following statement: Negation:

If it is May 22, then we have the Final Exam.

Conditional Statements Page 2
<u>DEF</u> The <u>contrapositive</u> of a conditional statement of the form "If p then q " is <u>If $\sim q$ then $\sim p$.</u>
i.e. The <u>contrapositive</u> of $p \to q$ is <u>$\sim q \to \sim p$</u>
Important: A conditional statement is <u>logically equivalent</u> to its contrapositive. [Homework problem will show.]
<u>Ex</u> : Write the contrapositive of the following statement: If I go to the gym, then I stretch.
Contrapositive:
<u>DEF</u> Given the conditional statement "If p then q ",
• The <u>CONVERSE</u> is <u>"If q then p."</u> i.e. The converse of $p \to q$ is $q \to p$.
• The <u>INVERSE</u> is <u>"If $\sim p$ then $\sim q$." i.e. The inverse of $p \to q$ is $\sim p \to \sim q$.</u>
Important: The converse and inverse are <u>NOT logically equivalent</u> to the original conditional statement.
But, they are logically equivalent to <u>each other</u> since they are the <u>contrapositive of each other</u> .
\underline{Ex} : Write the converse and inverse of the following statement: If I go to the gym, then I stretch.
Converse:
Inverse:
The statement "p only if q" meansIf not q then not p." (symbolically: $\sim q \rightarrow \sim p$
which is equivalent to $p \rightarrow q$ since it is the <u>contrapositive</u> .
Be careful, it is not saying $\underline{ } "q \text{ implies } p"$.
The expression <u>"p if q"</u> is really $q \to p$.
\underline{Ex} : Use the contrapositive to rewrite the following in 2 ways: She will move only if the job offer is good.

$\underline{\text{DEF}}$ The biconditional of p and q is p if, and only if q ", \underline{f} denoted $p \leftrightarrow q$. It is true if both p and q have the same \underline{f} truth values and false otherwise. \underline{f}	$\begin{array}{c c} p & q \\ \hline \Gamma & T \\ \Gamma & F \\ F & T \\ F & F \\ F & F \end{array}$	$\begin{array}{c} p \leftrightarrow q \\ \hline T \\ F \\ F \\ T \\ \end{array}$
Note: $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$ [See book for truth table.]	·	
<u>DEF</u> r is a sufficient condition for s means <u>"if</u> r , then s ".		i.e., $r \rightarrow s$
<u>DEF</u> r is a necessary condition for s means <u>"if not r, then not s"</u> .		i.e., $\sim r \rightarrow \sim s$
Which has the equivalent contrapositive: "if s , then r " $s \to r$.		
<u>DEF</u> r is a necessary and sufficient condition for s means <u>"r iff s"</u> .		i.e., $\sim r \leftrightarrow \sim s$
$\underline{\mathbf{Ex}}$: If you travel internationally, then you have a passport.		
Rewrite using "sufficient":		
Rewrite using "necessary":		
\underline{Ex} : Rewrite the following statement in "if-then" form in 2 ways using the contraposite	ive.	

Having 2 sides of equal length is necessary for a triangle to be isosceles.

1.

2.