Math 301 Discrete Mathematics – Crawford

		Score
	1	/12
	2	/12
	3	/12
 Books, notes (in any form), and calculators are not allowed. Put all of your work and answers on other sheets of paper. Include this sheet as a cover sheet. 		/10
		/14
• Show all your work. Partial credit may be given for written work. Good Luck!	6	/14
	7	/14
	8	/14
	Total	/100

1. (12 pts). Given the following algorithm, make a trace table and clearly state the final values of j, s, and t.

```
\begin{array}{l} j := 3 \\ s := 18 \\ t := 4 \\ \textbf{while } j \neq 7 \\ \textbf{if } (j > 5 \text{ or } j = 3) \\ \textbf{then } s := s - 3 \\ \textbf{else } t := 2t + j \\ j := j + 1 \\ \textbf{end while} \end{array}
```

2. (12 pts). Let $a_0 = -1$, $a_1 = 2$, $a_2 = -2$, $a_3 = 3$, $a_4 = -2$, $a_5 = 2$, and $a_6 = -1$. Compute each of the following:

(a).
$$\sum_{k=0}^{6} a_k$$
 (b). $\sum_{j=1}^{3} a_{2j}$ (c). $\prod_{i=0}^{3} a_i$ (d). $\prod_{k=1}^{3} k^2$

3. (12 pts). Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{u, v, w, x, y\}$ and define $h: X \to Y$ as follows:

$$h(1) = v, h(2) = x, h(3) = v, h(4) = v, h(5) = y.$$

(a). Draw an arrow diagram for h.

(b). Let $A = \{1, 2\}, C = \{x, v\}, D = \{w\}$. Find $h(A), h^{-1}(C), h^{-1}(D)$.

4. (10 pts). Define a relation P on \mathbb{Z} as follows: For every ordered pair $(m, n) \in \mathbb{Z} \times \mathbb{Z}$,

m P n	iff	m and n have a com	[Justify your answers.]	
(a). Is 15 P 25?		(b). Is 0 P 5?	(c). Is 22 <i>P</i> 27?	

- **5.** (14 pts). Define $g : \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 2n + 5, for each integer n.
- (a). Is g one-to-one? Prove or give a counterexample.
- (b). Is g onto? Prove or give a counterexample.

6. (14 pts). Prove by contradiction: For any even integer $n, n^2 - 2$ is not divisible by 4.

7. (14 pts). Prove by Mathematical Induction:

For every integer $n \ge 1$, $1 + 6 + 11 + 16 + \dots (5n - 4) = \frac{n(5n - 3)}{2}$

8. (14 pts). Prove: For all sets A, B, and C, $(A - B) \cup (C - B) \subseteq (A \cup C) - B$.