A point $P(x, y, z)$ can be represented as $P(\rho, \theta, \phi)$ in spherical coordinates, where
[Sketch]
\qquad is the distance between \qquad P and the origin

$$
\Rightarrow \quad \rho^{2}=x^{2}+y^{2}+z^{2} \quad \rho \geq 0
$$

θ measures the angle in the $x y$-plane from the positive x-axis to the line segment $\overline{O P^{\prime}}$

Same \qquad θ for cylindrical coordinates.
ϕ measures the angle from the \qquad positive z-axis to the line segment \qquad $\overline{O P}$. $\quad(0 \leq \phi \leq \pi)$

To convert between coordinate systems, consider triangle $O P^{\prime} P$.
[Sketch]

Spherical to Rectangular:

Rectangular to Spherical:

Spherical to Cylindrical:

Cylindrical to Spherical:

EX Given the spherical point $\left(2, \frac{\pi}{4}, \frac{\pi}{3}\right)$
(a). Plot the point
(b). Convert to Rectangular
(c). Convert to Cylindrical

Spherical coordinates are good for describing surfaces that have \qquad symmetry about a point

EX

EX Identify the following surface and sketch. $\rho \sin \theta=2$
$\underline{\text { EX }}$ Write the equation for a the hyperboloid of one sheet in spherical coordinates. $x^{2}+y^{2}-z^{2}=1$

Triple Integrals in Spherical Coordinates $\iiint_{E} f(x, y, z) d V$
What is the volume element $d V$?
[Sketch]
$\iiint_{E} f(x, y, z) d V=\iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) d V=$
where E is the spherical wedge $E=\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}$

EX Find the volume between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=16$ and inside the cone $3 z^{2}=x^{2}+y^{2}$.

EX Sketch the solid region of integration. Convert the integral to spherical coordinates.
$\int_{-3}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{-\sqrt{9-x^{2}-y^{2}}}^{\sqrt{9-x^{2}-y^{2}}} x d z d x d y$

EX Convert to spherical and integrate. $\iiint_{E} \frac{\sqrt{x^{2}+y^{2}+z^{2}}}{z} d V$ where E is the solid bounded by the upper half of the cone $z^{2}=x^{2}+y^{2}$ and the plane $z=1$.

