A point P(x,y,z) can be represented as $P(\
ho,\ heta,\ \phi$) in spherical coordinates, where

[Sketch]

ρ	is the distance between	and the origin	\Rightarrow	$\rho^2 = x^2 + y^2 + z^2 \rho \ge 0$
θ	measures the angle in the xy-plane from the positive x-axis to the line segment $\overline{OP'}$			
			Same _	$\underline{\theta}$ for cylindrical coordinates.
ϕ	measures the angle from the	positive <i>z</i> -axis	_ to the line segment $_$	$\overline{\underline{P}}$. ($0 \le \phi \le \pi$)

To convert between coordinate systems, consider triangle $OP^\prime P.$

[Sketch]

Spherical to Rectangular:

Rectangular to Spherical:

Spherical to Cylindrical:

Cylindrical to Spherical:

<u>EX</u> Given the spherical point $\left(2, \frac{\pi}{4}, \frac{\pi}{3}\right)$

(a). Plot the point

(b). Convert to Rectangular

(c). Convert to Cylindrical

 $\mathbf{E}\mathbf{X}$

Spherical coordinates are good for describing surfaces that have <u>symmetry about a point</u>.

<u>EX</u> Identify the following surface and sketch. $\rho \sin \theta = 2$

 $\underline{\mathbf{EX}}$ Write the equation for a the hyperboloid of one sheet in spherical coordinates. $x^2 + y^2 - z^2 = 1$

Triple Integrals in Spherical Coordinates $\int \int \int_E f(x,y,z) \; dV$

What is the volume element dV?

[Sketch]

$$\int \int \int_E f(x,y,z) \ dV = \int \int \int_E f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \ dV =$$

where E is the spherical wedge $E=\{(\rho,\theta,\phi)|a\leq\rho\leq b,\alpha\leq\theta\leq\beta,c\leq\phi\leq d\}$

<u>EX</u> Find the volume between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 16$ and inside the cone $3z^2 = x^2 + y^2$.

EX Sketch the solid region of integration. Convert the integral to spherical coordinates.

$$\int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} \int_{-\sqrt{9-x^2-y^2}}^{\sqrt{9-x^2-y^2}} x \, dz \, dx \, dy$$

<u>EX</u> Convert to spherical and integrate. $\int \int \int_E \frac{\sqrt{x^2 + y^2 + z^2}}{z} dV$ where *E* is the solid bounded by the upper half of the cone $z^2 = x^2 + y^2$ and the plane z = 1.