Triple integral over a general bounded region in 3D (i.e. \qquad a solid)

Let D be a (\qquad vertically or horizontally simple) region in the $x y$-plane.

Let $z=u_{1}(x, y)$ and $z=u_{2}(x, y)$ be continuous on D and $u_{1}(x, y) \leq u_{2}(x, y)$ on D.
Define the \qquad to be $E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}$.
[Sketch]

We want to integrate $f(x, y, z)$ over the solid region E.

Subdivide E and use approximating boxes of volume $\Delta V=\Delta x \Delta y \Delta z$
\Rightarrow Triple Riemann Sum and take the limit: $\lim _{l, m, n \rightarrow \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V=\iiint_{E} f(x, y, z) d V$

Type 1 Solid Region:

D is in the \qquad and the solid lies between the two surfaces \qquad $z=u_{1}(x, y)$ and $z=u_{2}(x, y)$ $\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y, z)}^{u_{2}(x, y, z)} f(x, y, z) d z\right] d A$

Furthermore:

- If D is a Type 1 Plane Region in the $x y$-plane [Sketch]

$$
\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y, z)}^{u_{2}(x, y, z)} f(x, y, z) d z d y d x
$$

- If D is a Type 2 Plane Region in the $x y$-plane

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} \int_{u_{1}(x, y, z)}^{u_{2}(x, y, z)} f(x, y, z) d z d x d y
$$

Similar for Type 2 Solid Regions:
D is in the $y z$-plane and the solid lies between the two surfaces $x=u_{1}(y, z)$ and $x=u_{2}(y, z)$.

Similar for Type 3 Solid Regions:
D is in the $x z$-plane and the solid lies between the two surfaces $y=u_{1}(x, z)$ and $y=u_{2}(x, z)$.
$\underline{\text { EX }}$ Evaluate $\iiint_{E} x z d V$
where E is the solid tetrahedron with vertices $(0,0,0),(0,1,0),(1,1,0)$, and $(0,1,1)$.

EX $\iiint_{E} z^{3} d V$ where E is the solid bounded by $y^{2}+z^{2}=4$ and the planes $x=0, y=2 x$, and $z=0$ in the first octant.

EX Re-do the last example, but integrate with respect to x first.

Similar to $\iint_{D} d A=A(D) \quad \iiint_{E} d V=V(E)$
$\underline{\text { EX }}$ Find the volume of the solid bounded by the elliptic cylinder $4 x^{2}+z^{2}=4$ and the planes $y=0$ and $y=z+2$. [Sketch]

EX Re-do the last example integrating with respect to x first.

