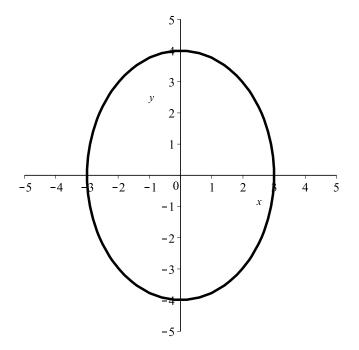
Lagrange Multipliers					
From last time:	Maximize $V = xyz$	subject to	2x + 2y + z = 108.		
More Generally:	Optimize	subject to		(Constraint is)
More Generally:	Optimize	subject to		(Constraint is)

i.e. Find the points (x, y) on the level curve g(x, y) = C that will yield max or min values of f. [Similar for functions of 3 variables.]

<u>EX</u> Maximize f(x, y) = 2xy for x, y > 0 subject to $\frac{x^2}{9} + \frac{y^2}{16} = 1$.

The constraint is given in the figure:



Consider level curves of the function f(x, y) = 2xy that we want to maximize. \Rightarrow

k = 4:

k = 8:

k = 12:

k=16:

k = 20:

Lagrange Multipliers		
What is happening at the point $P_0(x_0, y_0)$ on g	g where f is maximum	m?
f and g have a	\Rightarrow	f and g have the

 \Rightarrow Since the direction of the normal line is given by the ______, then the gradient vectors at P_0 of f and g are ______.

 \Rightarrow The gradient vectors are

	~
=	
	7

OR

for some scalar λ (

] and we just introduced λ [

).

].

Page 2

Recall, we are trying to find the point (x_0, y_0) [

]

 \Rightarrow [

From (*): $\langle f_x, f_y \rangle = \lambda \langle g_x, g_y \rangle$.

 \Rightarrow

and

<u>EX</u> Maximize f(x, y) = 2xy for x, y > 0 subject to $\frac{x^2}{9} + \frac{y^2}{16} = 1$. $\nabla f = \langle 2y, 2x \rangle$ and $\nabla g = \left\langle \frac{2}{9}x, \frac{1}{8}y \right\rangle$ $\langle 2y, 2x \rangle = \lambda \left\langle \frac{2}{9}x, \frac{1}{8}y \right\rangle$ $\underline{\mathbf{EX}}$ (from last time) Maximize V=xyz subject to 2x+2y+z=108

 $\nabla V = \lambda \nabla g$

<u>EX</u> Find the <u>absolute</u> extrema of $f(x, y) = 2x^2 + 3y^2 - 4x - 5$ on the disk $x^2 + y^2 \le 16$.

Interior:

AND $f_y = 6y = 0$

Boundary: Optimize $f(x,y) = 2x^2 + 3y^2 - 4x - 5$ subject to ______.

 $f_x = 4x - 4 = 0$

Constrained Max/Min Problem \Rightarrow

Corners: None

Compare f(x, y) at the different points where an absolute max/min could possibly occur:

 $\begin{array}{rcl} f(x,y) &=& 2x^2+3y^2-4x-5\\ f(1,0) &=&\\ f(4,0) &=& 2(4)^2+3(0)^2-4(4)-5=\\ f(-4,0) &=& 2(-4)^2+3(0)^2-4(-4)-5=\\ f(-2,\pm\sqrt{12}) &=& 2(-2)^2+3(\pm\sqrt{12})^2-4(-2)-5= \end{array}$

Two Constraints: Optimize f = f(x, y, z) subject to g(x, y, z) = k and h(x, y, z) = c.

 $\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu \nabla h(x_0, y_0, z_0)$

 \Rightarrow

<u>EX</u> The plane x - y + 3z = 6 intersects the sphere $x^2 + y^2 + z^2 = 9$ in an ellipse (curve C). Find the highest and lowest points on the ellipse.

