From last time: Maximize $V=x y z \quad$ subject to $2 x+2 y+z=108$.
More Generally: Optimize
subject to
(Constraint is \qquad)

More Generally: Optimize
subject to
(Constraint is \qquad —)
i.e. Find the points (x, y) on the level curve $g(x, y)=C$ that will yield max or min values of f. [Similar for functions of 3 variables.]
EX Maximize $f(x, y)=2 x y$ for $x, y>0$ subject to $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
The constraint is given in the figure:

Consider level curves of the function $f(x, y)=2 x y$ that we want to maximize. $\quad \Rightarrow$
$k=4:$
$k=8:$
$k=12:$
$k=16:$
$k=20:$

What is happening at the point $P_{0}\left(x_{0}, y_{0}\right)$ on g where f is maximum?
f and g have a $\quad \Rightarrow \quad f$ and g have the
\Rightarrow Since the direction of the normal line is given by the \qquad , then the gradient vectors at P_{0} of f and g are \qquad .
\Rightarrow The gradient vectors are \qquad
$\Rightarrow \quad$ OR
for some scalar λ ().

Recall, we are trying to find the point $\left(x_{0}, y_{0}\right)$ [
] and we just introduced λ [
$\Rightarrow[]$
$\operatorname{From}\left({ }^{*}\right):\left\langle f_{x}, f_{y}\right\rangle=\lambda\left\langle g_{x}, g_{y}\right\rangle$.
\Rightarrow
and

EX Maximize $f(x, y)=2 x y$ for $x, y>0$ subject to $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
$\nabla f=\langle 2 y, 2 x\rangle \quad$ and $\quad \nabla g=\left\langle\frac{2}{9} x, \frac{1}{8} y\right\rangle$
$\langle 2 y, 2 x\rangle=\lambda\left\langle\frac{2}{9} x, \frac{1}{8} y\right\rangle$

EX (from last time) Maximize $V=x y z$ subject to $2 x+2 y+z=108$
$\nabla V=\lambda \nabla g$

EX Find the $\underline{\text { absolute }}$ extrema of $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the disk $x^{2}+y^{2} \leq 16$.

Interior:
$f_{x}=4 x-4=0$
AND

$$
f_{y}=6 y=0
$$

Boundary: Optimize $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ subject to \qquad .

$$
\Rightarrow
$$

Corners: None

Compare $f(x, y)$ at the different points where an absolute max/min could possibly occur:

$$
\begin{aligned}
f(x, y) & =2 x^{2}+3 y^{2}-4 x-5 \\
f(1,0) & = \\
f(4,0) & =2(4)^{2}+3(0)^{2}-4(4)-5= \\
f(-4,0) & =2(-4)^{2}+3(0)^{2}-4(-4)-5= \\
f(-2, \pm \sqrt{12}) & =2(-2)^{2}+3(\pm \sqrt{12})^{2}-4(-2)-5=
\end{aligned}
$$

Two Constraints: Optimize $f=f(x, y, z)$ subject to $g(x, y, z)=k$ and $h(x, y, z)=c$.
$\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}, z_{0}\right)+\mu \nabla h\left(x_{0}, y_{0}, z_{0}\right)$
\Rightarrow

EX The plane $x-y+3 z=6$ intersects the sphere $x^{2}+y^{2}+z^{2}=9$ in an ellipse (curve C). Find the highest and lowest points on the ellipse.

