Sketching graphs of surfaces in 3D:

A **<u>cylinder</u>** is a surface that consists of

Note about the equations of cylindrical surfaces.

<u>Ex:</u> Parabolic Cylinder

 $\underline{Ex:}$ Circular Cylinder

Ex: Elliptic Cylinder

A **<u>quadratic surface</u>** is the graph of a

6 Basic Types

HYPERBOLIC PARABOLOID ELLIPTIC CONE HYPERBOLOID OF ONE SHEET

HYPERBOLOID OF TWO SHEETS ELLIPSOID ELLIPTIC PARABOLOID

Match the names of the surfaces above to their graph in the examples below.

HYPERBOLIC PARABOLOID ELLIPTIC CONE HYPERBOLOID OF ONE SHEET HYPERBOLOID OF TWO SHEETS ELLIPSOID ELLIPTIC PARABOLOID	$\frac{z^{2}}{c^{2}} = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}$ $\frac{xy-plane}{z = 0 point}$ $z = k < 0 ellipse$ $\frac{yz-plane}{x = 0 2 \ lines}$ $x = k < 0 hyperbolas$ $x = k < 0 hyperbolas$ $\frac{xz-plane}{y = 0 2 \ lines}$ $y = k < 0 hyperbolas$ $y = k > 0 hyperbolas$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ $\frac{xy-plane}{z = 0 ellipse}$ $z = k < 0 ellipse$ $\frac{yz-plane}{x = k < 0 hyperbola}$ $x = k < 0 hyperbola$ $\frac{xz-plane}{y = 0 hyperbola}$ $y = k < 0 hyperbola$ $y = k < 0 hyperbola$ $y = k < 0 hyperbola$	$-\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$ $\frac{xy-plane}{z = 0}$ $z = k < 0$ $yz-plane$ $x = 0$ $x = k < 0$ $x = k < 0$ $\frac{xz-plane}{y = 0}$ $y = k < 0$ $y = k < 0$ $y = k > 0$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$ $\frac{xy-plane}{z = 0 point}$ $z = k < 0 not \ possible$ $z = k > 0 ellipse$ $\frac{yz-plane}{x = 0 parabola}$ $x = k < 0 parabola$ $\frac{xz-plane}{y = 0 parabola}$ $y = k < 0 parabola$ $y = k > 0 parabola$ $y = k > 0 parabola$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$ $\frac{xy \text{-plane}}{z = 0}$ $z = k < 0$ $z = k > 0$ $\frac{yz \text{-plane}}{x = 0}$ $x = k < 0$ $x = k < 0$ $\frac{xz \text{-plane}}{y = 0}$ $y = k < 0$ $y = k < 0$

Ex: Reduce the equation to one of the standard forms, classify the surface, and sketch it.

 $4x^2 - 8x - 16y^2 - 96y - z^2 = 124$

Ex: Use traces to sketch and identify the surface $x^2 + 4y^2 + z^2 = 4$.

Ex: Sketch the surface $z = \sin y$.