1. By looking at the definition, Property: $\mathbf{a} \times \mathbf{a} = \underline{\mathbf{0}}$

- 2. Given $\mathbf{a} = -3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 6\mathbf{i} + 3\mathbf{j} + \mathbf{k}$,
- (a). Find $\mathbf{a} \times \mathbf{b}$ (b). Find $\mathbf{b} \times \mathbf{a}$

State a property of the cross product that you expect to be true from parts (a) and (b).

Property: $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$

Using your result of 2(a), find

(c). $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a}$ (d). $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}$

Write down the two properties from parts (c) and (d).

Property: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \underline{\mathbf{0}}$ $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \underline{\mathbf{0}}$

Fill in the blanks below for the property implied by the previous property.

Property: The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both vectors \mathbf{a} and \mathbf{b} since the dot product is <u>0</u>

See book for proof.

3. Property: If θ is the angle between **a** and **b**, then $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$.

i.e. The magnitude of the cross product equals the magnitude of **a** times the magnitude of **b** times $\sin \theta$.

(a). Suppose **a** and **b** are nonzero vectors such that $\mathbf{a} \times \mathbf{b} = \mathbf{0}$. What are the possible angles θ between **a** and **b**?

Fill in the blank for a property of the cross product that you expect to be true from part (a).

Property: The vectors \mathbf{a} and \mathbf{b} are <u>parallel</u> if and only if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

4. Recall that the general formula for the area of a parallelogram is $A = \text{base} \cdot \text{height}$. Given the parallelogram formed from two vectors **a** and **b** [See board]

(a). What is the length of the base of the parallelogram?

[Don't over think it.]

- (b). Write an expression for the height of the parallelogram using the angle θ and magnitudes of the vectors **a** and/or **b**. [Think right triangle and trig.]
- (c). Using parts (a) & (b), what is the area of the parallelogram $(A = base \cdot base)$ in terms of the vector magnitudes and angles?
- (d). Rewrite the formula for the area of a parallelogram in terms of the cross product.
- (e). Find the area of a parallelogram with vertices P(0, 0, 0), Q(5, 0, 0), R(2, 6, 6) and S(-3, 6, 6).