

Warm-Up: Given the vectors \mathbf{a} and \mathbf{b} below, make an educated guess and sketch the vector projection of b onto a.

Let $\mathbf{a}=\overrightarrow{P Q}$ and let $\mathbf{b}=\overrightarrow{P R}$.
Def The vector projection of \mathbf{b} onto \mathbf{a} is found by sketching a \qquad from the end of \mathbf{b} (i.e. at R)

to the line containing a.
Let S be the intersection point.
The vector \qquad is the vector projection of \mathbf{b} onto \mathbf{a} and is denoted as

Def The \qquad is given by

Also called the \qquad of \mathbf{b} onto \mathbf{a}.

Using trig and the figure above,

$$
\cos \theta=\frac{\operatorname{comp}_{\mathbf{a}} \mathbf{b}}{|\mathbf{b}|}
$$

$$
\Rightarrow
$$

But if we are not given the angle θ how do we find $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$? And, how do we find $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$?

Recall, $\mathbf{a} \cdot \mathbf{b}=$

So now we know the length of the vector given by $\operatorname{proj}_{\mathbf{a}} \mathbf{b} \Rightarrow$ length:

We also know that the vector given by $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ points in the direction of vector \qquad .
\Rightarrow So we need a \qquad in the direction of \qquad \Rightarrow $\mathbf{u}=$

Then multiply the unit vector by the desired length

$$
\Rightarrow \quad \operatorname{proj}_{\mathbf{a}} \mathbf{b}=
$$

$\underline{\text { Ex }}$ Given $\mathbf{v}=\langle 3,2\rangle$ and $\mathbf{w}=\langle-2,-5\rangle$,
(a). Sketch \mathbf{v}, \mathbf{w}, and $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.
(b). Find $\operatorname{proj}_{\mathbf{v}} w$.

Ex Given $\mathbf{a}=\langle-1,-2,2\rangle$ and $\mathbf{b}=\langle 3,3,4\rangle$, find the scalar and vector projections of \mathbf{b} onto \mathbf{a}.

Applications to Work

Previously, the work W done by a \qquad force F moving an object through a distance d is given by
\qquad .

Units of work are
[But this formula is only valid if the force is acting in the same linear direction as the motion.]

But if the force acts in a direction different than the motion, we need to use \qquad

Ex To close a sliding barn door, a person pulls on a rope with a constant force of 50 lbs at an angle of 60° declination. Find the work done in moving the door 12 ft to a closed position. [Do both ways to show that the angle formula is easier.]

Ex A wagon is pulled a horizontal distance of 100 m by a constant 50 N force. The handle is held at an angle of 30° above the horizontal. Find the work done.

