Warm-Up: Find a vector of length 3 in the same direction as $\mathbf{a} = \langle 2, 1, -1 \rangle$.

 $\label{eq:warm-Up: Given the vectors \mathbf{a} and \mathbf{b} below, make an educated guess and sketch the vector projection of \mathbf{b} onto \mathbf{a}.}$

Let
$$\mathbf{a} = \overrightarrow{PQ}$$
 and let $\mathbf{b} = \overrightarrow{PR}$.
Def The vector projection of \mathbf{b} onto \mathbf{a} is found by
sketching a ______ from the end of \mathbf{b} (i.e. at R)
_______ to the line containing \mathbf{a} .
Let S be the intersection point.
The vector ______ is the vector projection of \mathbf{b} onto \mathbf{a}
and is denoted as
Def The ______ is given by
Also called the ______ of \mathbf{b} onto \mathbf{a} .

Using trig and the figure above,

But if we are not given the angle θ how do we find $\operatorname{comp}_{\mathbf{a}}\mathbf{b}$? And, how do we find $\operatorname{proj}_{\mathbf{a}}\mathbf{b}$?

Recall, $\mathbf{a} \cdot \mathbf{b} =$

So now we know the length of the <u>vector</u> given by $\operatorname{proj}_{\mathbf{a}} \mathbf{b} \Rightarrow$ length: We also know that the <u>vector</u> given by $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ points in the direction of vector _______. \Rightarrow So we need a _______ in the direction of _______ \Rightarrow u = Then multiply the unit vector by the desired length \Rightarrow proj_a b = $\underline{\mathbf{Ex}}$ Given $\mathbf{v} = \langle 3, 2 \rangle$ and $\mathbf{w} = \langle -2, -5 \rangle$,

(a). Sketch \mathbf{v}, \mathbf{w} , and $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.

(b). Find $\operatorname{proj}_{\mathbf{v}} \mathbf{w}$.

<u>Ex</u> Given $\mathbf{a} = \langle -1, -2, 2 \rangle$ and $\mathbf{b} = \langle 3, 3, 4 \rangle$, find the scalar and vector projections of **b** onto **a**.

Vector Projections	Page 3
Applications to Work	
Previously, the work W done by a	force F moving an object through a distance d is given by

Units of work are

[But this formula is only valid if the force is acting in the same linear direction as the motion.]

But if the force acts in a direction different than the motion, we need to use

<u>Ex</u> To close a sliding barn door, a person pulls on a rope with a constant force of 50 lbs at an angle of 60° declination. Find the work done in moving the door 12 ft to a closed position. [Do both ways to show that the angle formula is easier.]

 $\underline{\mathbf{Ex}}$ A wagon is pulled a horizontal distance of 100 m by a constant 50 N force. The handle is held at an angle of 30° above the horizontal. Find the work done.