Vectors

Quantities

- <u>SCALAR</u>: Measures magnitude only
- <u>VECTOR</u>: Measures magnitude and direction
- Graphical Representation of Vectors: line segment and arrow (length = magnitude)(direction)

[Sketch Picture with initial point, terminal point, and hand-written notation]

Two vectors are equal iff [Sketch picture both w/ & w/o coord. system. Initial/terminal points don't matter. Graph Rep not unique.]

• •

- (a). Equal magnitude
- (b). Same direction

Mathematical Representation:

.

2-Dimensional
Vector Space
$$V_2$$
3-Dimensional
Vector Space V_3 n -Dimensional
Vector Space V_n $\mathbf{v} = \vec{v} = \langle a, b \rangle$ $\mathbf{v} = \vec{v} = \langle a, b, c \rangle$ $\mathbf{v} = \vec{v} = \langle a_1, a_2, a_3, \dots, a_n \rangle$ components of $\mathbf{v}: a, b$
magnitude:
 $|\mathbf{v}| = \sqrt{a^2 + b^2}$ magnitude:
 $|\mathbf{v}| = \sqrt{a^2 + b^2 + c^2}$ magnitude:
 $|\mathbf{v}| = \sqrt{a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2}$

• . 1

- eg. length, speed, mass, etc.
- displacement, velocity, force, etc. eg.

POSITION VECTOR: Theuniquevector starting atthe origin Oand ending at the point P(a,b)or P(a,b,c).[Sketch]

Ex: Sketch $\mathbf{v} = \langle 2, -3 \rangle$ starting at (a). P(-1, -2) (b). Origin

Ex: Find the length of $\vec{w} = \left\langle \frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle$

Ex. Given
$$P(2,9)$$
 and $Q(-1,6)$ (a). Sketch \overrightarrow{PQ} (b). Find \overrightarrow{PQ} (c). Find \overrightarrow{QP}

General Formula: For $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, the vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$

Scalar Multiplication: $c\mathbf{v} = c \langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$

Ex. Given $\mathbf{v} = \langle 2, 1 \rangle$,

(a). Find and sketch $3\mathbf{v}$

(b). Compare $|\mathbf{v}|$ and $|3\mathbf{v}|$.

[Comments on $|c\mathbf{v}|$ and $c\mathbf{v}$.]

Two vectors \mathbf{v} and \mathbf{w} are parallel iff $\mathbf{w} = c\mathbf{v}$

ie. same or opposite direction