2D Vector Applications: Consider a 2D position vector $\mathbf{v}=\langle a, b\rangle$.
[Sketch picture and label.]

From trigonometry: $\quad \cos \theta=\frac{a}{|\mathbf{v}|} \quad$ and $\quad \sin \theta=\frac{b}{|\mathbf{v}|}$
$a=|\mathbf{v}| \cos \theta$ and $b=|\mathbf{v}| \sin \theta$ give the horizontal and vertical components of the vector.

Ex Find the vector in component form that has length 2 and direction $\frac{\pi}{6}$.

Ex (a). If the wind is blowing at 55 mph in the $\mathrm{N} 30^{\circ} \mathrm{E}$ direction, find the wind velocity vector \mathbf{w}.
(b). If a jet is flying in still air at 765 mph in the $\mathrm{N} 45^{\circ} \mathrm{W}$ direction, find the jet velocity vector \mathbf{v}.
(c). Find the true velocity (ground speed) of the jet flying in the 55 mph wind.

Ex: A 200 lb . traffic light is supported by two cables, which make 15° and 20° angles with the horizontal (see figure). The light hangs in equilibrium (all forces balance). Find the forces (tensions) \mathbf{T}_{1} and \mathbf{T}_{2} in both cables.
$\mathbf{T}_{1}=\langle | \mathbf{T}_{1}\left|\cos 165^{\circ},\left|\mathbf{T}_{1}\right| \sin 165^{\circ}\right\rangle=\left\langle t_{1}, t_{2}\right\rangle$
$\mathbf{T}_{2}=\langle | \mathbf{T}_{2}\left|\cos 20^{\circ},\left|\mathbf{T}_{2}\right| \sin 20^{\circ}\right\rangle=\left\langle s_{1}, s_{2}\right\rangle$
$\mathbf{w}=\langle 0,-200\rangle$
Forces Balance: $\mathbf{T}_{1}+\mathbf{T}_{2}+\mathbf{w}=\mathbf{0}$
i.e. $\left\langle t_{1}, t_{2}\right\rangle+\left\langle s_{1}, s_{2}\right\rangle+\langle 0,-200\rangle=\langle 0,0\rangle \quad \Rightarrow \quad\left\langle t_{1}+s_{1}, t_{2}+s_{2}-200\right\rangle=\langle 0,0\rangle$

Two vectors are equal if their components are equal. $\quad \Rightarrow \quad t_{1}+s_{1}=0$ and $t_{2}+s_{2}-200=0$
i.e. $t_{1}+s_{1}=0$ and $t_{2}+s_{2}=200$

Looks like 2 equations, 4 unknowns, but really...

Substitute expressions for t_{1}, t_{2}, s_{1}, and s_{2}
$t_{1}+s_{1}=0 \Rightarrow\left|\mathbf{T}_{1}\right| \cos 165^{\circ}+\left|\mathbf{T}_{2}\right| \cos 20^{\circ}=0$
$t_{2}+s_{2}=200 \Rightarrow\left|\mathbf{T}_{1}\right| \sin 165^{\circ}+\left|\mathbf{T}_{2}\right| \sin 20^{\circ}=200$
(2) only 2 unknowns $\left|\mathrm{T}_{1}\right|$ and $\left|\mathrm{T}_{2}\right|$

Solve for $\left|\mathbf{T}_{2}\right|$ in equation (1): $\quad\left|\mathbf{T}_{2}\right|=\frac{-\left|\mathbf{T}_{1}\right| \cos 165^{\circ}}{\cos 20^{\circ}}$
Substitute into (2): $\quad\left|\mathbf{T}_{1}\right| \sin 165^{\circ}+\frac{-\left|\mathbf{T}_{1}\right| \cos 165^{\circ}}{\cos 20^{\circ}} \sin 20^{\circ}=200$
And solve for $\left|\mathbf{T}_{1}\right|: \quad\left|\mathbf{T}_{1}\right| \cdot\left(\sin 165^{\circ}-\cos 165^{\circ} \tan 20^{\circ}\right)=200$
$\left|\mathbf{T}_{1}\right|=\frac{200}{\sin 165^{\circ}-\cos 165^{\circ} \tan 20^{\circ}} \approx 327.66 \mathrm{lb}$. force
$\Rightarrow\left|\mathbf{T}_{2}\right|=\frac{-327.66 \cos 165^{\circ}}{\cos 20^{\circ}} \approx 336.81 \mathrm{lb}$. force
Finally the tension vectors are:
$\mathbf{T}_{1}=\left\langle 327.66 \cos 165^{\circ}, 327.66 \sin 165^{\circ}\right\rangle \approx\langle-316.50,84.80\rangle$
$\mathbf{T}_{2}=\left\langle 336.81 \cos 20^{\circ}, 336.81 \sin 20^{\circ}\right\rangle \approx\langle 316.50,115.20\rangle$

