2-Dimensional Coordinate System 3-Dimensional Coordinate System 2 perpendicular coordinate axes (x and y) 3 perpendicular coordinate axes (x, y and z)

Intersection O is called the origin.

Coordinate <u>axes</u> divide the plane into 4 Quadrants.

A point in the (2D) plane is given by an ordered pair (a, b). Intersection ${\cal O}$ is called the origin.

Coordinate _____ divide the

into _____.

A point in the (3D) space is given by an ordered triplet (a, b, c).

Cartesian Product (Notation) $\mathbb{R}\times\mathbb{R}=\mathbb{R}^2=\{(x,y)|x,y\in\mathbb{R}\}$

Cartesian Product (Notation) $\mathbb{R}\times\mathbb{R}\times\mathbb{R}=\underline{\qquad}=\{(x,y,z)|x,y,z\in\mathbb{R}\}$

<u>Ex</u> Sketch y + z = 4 in \mathbb{R}^3 .

<u>Def</u> Given 2 points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ in space, the <u>distance</u> between them is given by

<u>Ex</u> Find the distance from the point (3, 7, -5) to the

(a). point (1, -4, 8)(b). xz-plane (c). z-axis

<u>Ex</u> Three points A, B, and C lie on the same line if and only if .

<u>Ex</u> Find the equation of a general sphere with radius r and center (h, k, l).

<u>Ex</u> Given center C(3, 4, -1) and radius $r = \sqrt{5}$,

(a). Find the equation of the sphere.

(b). Describe the intersection of the sphere with the (i) xy-plane. (ii) yz-plane.

<u>Ex</u> Describe the region in \mathbb{R}^3 given by $x^2 + 2x + y^2 \leq 3$.

<u>Ex</u> Write an inequality to describe the region inside the top half of the sphere with radius 3 and centered at (1, 1, 2).