2-Dimensional Coordinate System

2 perpendicular coordinate axes (x and y)

Intersection O is called the origin.

Coordinate axes divide the plane into 4 Quadrants.

A point in the (2D) plane is given by an ordered pair (a, b).

3-Dimensional Coordinate System

3 perpendicular coordinate axes (x, y and z)

Intersection O is called the origin.

Coordinate \qquad divide the
\qquad into \qquad .

A point in the (3D) space is given by an ordered triplet (a, b, c).

Cartesian Product (Notation)
$\mathbb{R} \times \mathbb{R} \times \mathbb{R}=$ \qquad $=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$

2-Dimensional Coordinate System

Sketch the graphs of the following equations.
(a). $y=3$
(b). $y=x$
(c.) $x^{2}+y^{2}=4$

3-Dimensional Coordinate System

Sketch the graphs of the following equations.
(a). $y=3$
(b). $y=x$
(c). $x^{2}+y^{2}=4$
\qquad . Graphs of equations in \mathbb{R}^{3} represent \qquad .
$\underline{\text { Ex }}$ Sketch $y+z=4$ in \mathbb{R}^{3}.

Def Given 2 points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ in space, the distance between them is given by

Ex Find the distance from the point $(3,7,-5)$ to the
(a). point $(1,-4,8)$
(b). $x z$-plane
(c). z-axis

Ex Three points A, B, and C lie on the same line if and only if \qquad .
\qquad is the set of all points in \mathbb{R}^{3} that are \qquad from a point C.
\qquad . \qquad .

Ex Find the equation of a general sphere with radius r and center (h, k, l).

Ex Given center $C(3,4,-1)$ and radius $r=\sqrt{5}$,
(a). Find the equation of the sphere.
(b). Describe the intersection of the sphere with the (i) $x y$-plane.
(ii) $y z$-plane.

Ex Describe the region in \mathbb{R}^{3} given by $x^{2}+2 x+y^{2} \leq 3$.

Ex Write an inequality to describe the region inside the top half of the sphere with radius 3 and centered at (1,1,2).

