Name:
Math 251 Calculus III - Crawford
Books, notes (in any form), and calculators are not allowed. Show all your work. Good Luck!

1. (1 pts) Which of the following formulas is correct?

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v} \quad \operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|^{2}} \mathbf{v} \quad \operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{u} \quad \operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|^{2}} \mathbf{u}
$$

2. (4 pts) Given $\mathbf{a}=\langle-2,2,1\rangle$ and $\mathbf{b}=\langle 3,-1,2\rangle$, find the vector projection of \mathbf{a} onto \mathbf{b} and simplify.
3. (5 pts) A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 N . How much work is done by the truck pulling the car 1 km ? [Include units.]
4. (5 pts) Given $\mathbf{a}=2 \mathbf{i}-3 \mathbf{k}$ and $\mathbf{b}=\mathbf{j}+2 \mathbf{k}$, find $\mathbf{a} \times \mathbf{b}$.
5. (5 pts) Use the scalar triple product to determine if the following vectors are coplanar. Show work and clearly state your conclusion.
$\mathbf{a}=\langle-1,0,2\rangle, \mathbf{b}=\langle 2,3,5\rangle$, and $\mathbf{c}=\langle-3,1,9\rangle$
