1. Find and sketch the domain of $f(x, y)=\sqrt{x^{2}+y^{2}-1}+\ln \left(4-x^{2}-y^{2}\right)$.
2. Draw a contour map for the function $f(x, y)=x^{2}-y$. In particular, neatly draw and label the level curves $f(x, y)=k$ for $k=-1,0,1,2$.
3. Find the limit, if it exists, or show that the limit does not exist.
(a). $\lim _{(x, y) \rightarrow(0,0)} \frac{x y+1}{x^{2}+y^{2}+1}$
(b). $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+2 y^{2}+3 z^{2}}{x^{2}+y^{2}+z^{2}}$
4. Given $f(x, y)=\left\{\begin{array}{cl}\frac{3 x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0),\end{array}\right.$ show that f is not continuous at $(0,0)$.
5.

(a). Find the first partial derivatives of $g(x, y)=\frac{x}{x+2 y}$.
(b). Find all second partial derivatives of $f(s, t)=\ln \left(3 s^{2}-t\right)^{2}$
(c). Use implicit differentiation to find $\partial z / \partial x$ for $x y z=\cos (x y z)$.
6. Given the surface $x^{2}+y^{2}+z^{2}-4 y-2 z+2=0$ and the surface represented by the graph of $f(x, y)=\frac{3}{2} x^{2}+y^{2}-\frac{1}{2}$.
(a). Determine whether the surfaces are tangent, normal, or neither at the point $(1,1,2)$.
(b). Find the equation of the tangent plane to the surface $f(x, y)=\frac{3}{2} x^{2}+y^{2}-\frac{1}{2}$ at the point $(1,1,2)$.
7. Find the linear approximation of the function $f(x, y)=e^{x} \cos x y$ at the point $(0,0)$.
8. If $z=y+f\left(x^{2}-y^{2}\right)$, where f is differentiable, show that $y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x$.
9. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ if the equation $\ln (x+y z)=1+x y^{2} z$ implicitly defines $z=z(x, y)$.
10. Given $z=z(x, y)$ where $x=2 r+3 s$ and $y=r^{2}$, find $\frac{\partial^{2} z}{\partial r^{2}}$
11. Write out the chain rule for $f=f(x, y, z)$, where $x=x(r, s), y=y(r, s), z=z(r, s)$
12. Find the directional derivative of $g(x, y)=\arctan \left(x y^{2}\right)$ at $(2,1)$ in the direction of $\mathbf{v}=\langle 2,-3\rangle$
13. Given $T(x, y, z)=3 x^{2}+4 y^{2}+5 z$ is the temperature at a point (x, y, z).
(a). How fast (in degrees per unit distance) is the temperature changing at the point $\mathrm{P}(1,-1,2)$ in the direction of $\mathrm{Q}(3,2,-4)$?
(b). In which direction does the temperature increase the fastest at P ?
14. Find the points on the hyperboloid $x^{2}-y^{2}+2 z^{2}=1$ where the normal line is parallel to the line that joins the points $(5,3,6)$ and $(8,4,10)$.
15. Given $f(x, y)=1-x^{3}+4 x y-2 y^{2}$
(a). Find all the critical points of f. Determine if each critical point yields a relative maximum or minimum or a saddle point.
(b). Find the absolute maximum and minimum values of f on the set D defined as the closed triangular region in the $x y$-plane with vertices $(0,0),(0,12)$, and $(12,0)$.
16. Find the points on the surface $x y^{2} z^{3}=2$ that are closest to the origin. [Use both the "regular" method (Section 14.7) and the method of Lagrange Multipliers (Section 14.8).]
17. Use the method of Lagrange Multipliers to find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the point (4, 2, 0).
18. Sketch the solid whose volume is given by the iterated integral $\int_{0}^{1} \int_{0}^{1} 2-x^{2}-y^{2} d y d x$.
19. Evaluate the following integrals
(a). $\int_{0}^{1} \int_{0}^{x} \cos \left(x^{2}\right) d y d x$
(b). $\iint_{D} y d A \quad$ where D is the region in the first quadrant that lies above $y=\frac{1}{x}$ and $y=x$ and below the line $y=2$.
20. Rewrite the integral using the indicated order of integration. (Do NOT evaluate):
(a). $\int_{-2}^{2} \int_{y^{2}}^{4} y d x d y \quad$ Rewrite using $d y d x$
(b). $\int_{0}^{2} \int_{x^{2}}^{x+2} d y d x \quad$ Rewrite using $d x d y$
21. Find the volume of the solid region in the 1st Octant bounded by the coordinate planes and the plane $2 x+3 y+4 z=12$.
22. Use a double integral and polar coordinates to find the volume of the solid above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the the sphere $x^{2}+y^{2}+z^{2}=1$. (Set up the integral, but do NOT evaluate.)

