Name: \qquad
Math 251 Multivariate Calculus - Crawford

Score	
1	$/ 6$
2	$/ 10$
3	$/ 14$
4	$/ 14$
5	$/ 14$
6	$/ 10$
7	$/ 8$
8	$/ 2$
9	$/ 100$
10	
Total	

1. $(6 \mathrm{pts})$. Find and sketch the domain of $f(x, y)=\frac{\sqrt{x}}{4-x^{2}-y^{2}}$
2. (10 pts). Find the limit, if it exists, or show that it does not exist.
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}$
3. (14 pts). For each of the given functions, find the indicated partial derivative.
(a). Find $f_{y y x}$ for $f(x, y)=x y^{4} e^{-x}$.
(b). Find $\frac{\partial z}{\partial y}$ where $z=z(x, y)$ is defined implicitly by $y z+x \ln y=z^{2}$.
4. (14 pts). Given $f(x, y)=\frac{x}{y^{2}}$,
(a). Find an equation of the tangent plane to the surface $z=f(x, y)$ at the point $(-4,2)$.
(b). Find the linearization $L(x, y)$ of f at the point $(-4,2)$.
(c). Use your answer from part (b) to approximate $f(-3.9,2.2)$.
5. (14 pts). Suppose that over a certain region of space the electrical potential V is given by $V(x, y, z)=6 x^{2}-4 x y+2 x y z$,
(a). Find the rate of change of the potential V at $P(-2,-1,3)$ in the direction of $\langle 1,3,-1\rangle$.
(b). In which direction is V decreasing the fastest at $P(-2,-1,3)$?
6. (18 pts). Find all the critical points of f and determine if each yields a local maximum or minimum or is a saddle point. In the case of a maximum or minimum, find the local maximum or minimum value(s).
$f(x, y)=x^{3}-3 x+\frac{1}{3} x y^{2}$,
7. (10 pts). Evaluate the following integral. [Show all work. Leave your answer exact and simplify.]
$\int_{0}^{\sqrt[3]{\pi}} \int_{0}^{x^{2}} y^{2}+\sin \left(x^{3}\right) d y d x$
8. (8 pts). Sketch the region of integration and change the order. [Do not evaluate.]
$\int_{0}^{4} \int_{\sqrt{x}}^{2} x^{2} y d y d x$
9. (8 pts). Convert the following integral to polar coordinates. [Do not evaluate.]
$\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{0} \frac{y^{2}}{x^{2}+y^{2}} d y d x$
10. (2 pts). Multiple Choice

Given that $f=f(x, y, z)$ where $x=x(s, t), y=y(s, t)$, and $z=z(s, t)$, circle the correct form of the chain rule.
(a). $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial s} \cdot \frac{\partial s}{\partial x}+\frac{\partial f}{\partial s} \cdot \frac{\partial s}{\partial y}+\frac{\partial f}{\partial s} \cdot \frac{\partial s}{\partial z}, \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial t} \cdot \frac{\partial t}{\partial x}+\frac{\partial f}{\partial t} \cdot \frac{\partial t}{\partial y}+\frac{\partial f}{\partial t} \cdot \frac{\partial t}{\partial z}$
(b). $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial s} \cdot \frac{\partial s}{\partial x}+\frac{\partial f}{\partial t} \cdot \frac{\partial t}{\partial x}, \quad \frac{\partial f}{\partial y}=\frac{\partial f}{\partial s} \cdot \frac{\partial s}{\partial y}+\frac{\partial f}{\partial t} \cdot \frac{\partial t}{\partial y}, \quad \frac{\partial f}{\partial z}=\frac{\partial f}{\partial s} \cdot \frac{\partial s}{\partial z}+\frac{\partial f}{\partial t} \cdot \frac{\partial t}{\partial z}$
(c). $\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial s}, \quad \frac{\partial f}{\partial t}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial t}$

