Name: _

Math 251, Multivariate Calculus - Crawford

Exam 1 08 March 2017

Score	
1	/12
2	/12
3	/12
4	/12
5	/28
6	/12
7	/6
8	/10
Total	/100

- Calculators, books, notes (in any form), cell phones, and any unauthorized sources are <u>not</u> allowed.
- You may use the given formula sheet.
- Evaluate trigonometric, exponential, logarithmic, etc., functions at standard values.
- Show all your work. Partial credit may be given for written work.
- Good Luck!

1. (12 pts). Given $\mathbf{a} = \langle 2, -2, 1 \rangle$ and $\mathbf{b} = \langle 4, -3, 0 \rangle$,

(a). Find |b - 3a|.

(b). Find a vector of length 4 in the opposite direction of b.

(a). Find the point at which the line intersects the plane.

(b). Find the symmetric equations of a line through the point found in part (a) and parallel to the line given by $\frac{x-3}{4} = y$, z = 6.

3. (12 pts). Find the equation of the plane through the points (0, -1, 3) and (-1, -1, 0) and is perpendicular to the plane 2x + 4y - 5z = 2.

[Do not simplify.]

4. (12 pts). Evaluate the limit. If the limit does not exist, clearly explain why.

$$\lim_{t \to 0} \left\langle \sqrt{3-t}, \ln(3t+1), \frac{e^{5t}-1}{3t} \right\rangle$$

- **5.** (28 pts). Given the curve $\mathbf{r}_1(t) = \langle \sin(3t), 2e^{2t}, 1 \rangle$
- (a). Find a parametric equation for the tangent line to the curve $\mathbf{r}_1(t)$ at the point (0, 2, 1).

(b). The curve $\mathbf{r}_1(t)$ intersects with $\mathbf{r}_2(s) = \langle \ln s^3, s^2 + 1, s \rangle$ at the point (0, 2, 1). Find the angle of intersection of the two curves at that point. [Leave your answer in terms of an inverse trigonometric function.]

(c). Find the curvature of $r_1(t)$ at the point (0,2,1) using $\kappa = \frac{|\mathbf{r'} \times \mathbf{r''}|}{|\mathbf{r'}|^3}$. [Do not simplify.]

6. (12 pts). Given $\mathbf{r}'(t) = \sqrt{t}\mathbf{i} + 2t\mathbf{j} + 3\mathbf{k}$ and $\mathbf{r}(1) = 2\mathbf{i} + \mathbf{j}$, find $\mathbf{r}(t)$. [Write your final answer as a single vector $\mathbf{r}(t)$.]

7. (6 pts). True or False. Clearly indicate whether the following statements are true or false.

- $\mathrm{T} \quad \mathrm{F} \quad \mathrm{proj}_{\mathbf{a}} \mathbf{b} = \mathbf{0} \text{ only if } \mathbf{a} = \mathbf{0} \text{ or } \mathbf{b} = \mathbf{0}.$
- T F The space curve given by $\mathbf{r}(t) = \langle e^t, e^{2t}, \cos t \rangle$ lies on the surface of a parabolic cylinder.

T F The arc length function is given by $\int_a^b |\mathbf{r}'(t)| dt$.

8. (10 pts). Match each of the following graphs with its equation. Also, state the name of each graph.

(a). $y = x^2 - z^2$ (b). $z^2 - y^2 + 2x^2 = 3$ (c). $-z^2 + y^2 - 2x^2 = 3$ (d). $z = x^2 + y^2$ (e). $x^2 + z^2 = y^2$

