Name: \qquad
Math 251, Multivariate Calculus - Crawford

Exam 1

Score	
1	$/ 12$
2	$/ 12$
3	$/ 12$
4	$/ 12$
5	$/ 28$
6	$/ 12$
7	$/ 10$
8	$/ 100$
Total	

1. $(12 \mathrm{pts})$. Given $\mathbf{a}=\langle 2,-2,1\rangle$ and $\mathbf{b}=\langle 4,-3,0\rangle$,
(a). Find $|\mathbf{b}-3 \mathbf{a}|$.
(b). Find a vector of length 4 in the opposite direction of \mathbf{b}.
2. (12 pts). Given the line $x=t-1, y=1+2 t$ and $z=3-t$ and the plane $3 x-y+2 z=5$
(a). Find the point at which the line intersects the plane.
(b). Find the symmetric equations of a line through the point found in part (a) and parallel to the line given by $\frac{x-3}{4}=y, \quad z=6$.
3. (12 pts). Find the equation of the plane through the points $(0,-1,3)$ and and $(-1,-1,0)$ and is perpendicular to the plane $2 x+4 y-5 z=2$.
4. (12 pts). Evaluate the limit. If the limit does not exist, clearly explain why.
$\lim _{t \rightarrow 0}\left\langle\sqrt{3-t}, \ln (3 t+1), \frac{e^{5 t}-1}{3 t}\right\rangle$
5. $(28 \mathrm{pts})$. Given the curve $\mathbf{r}_{1}(t)=\left\langle\sin (3 t), 2 e^{2 t}, 1\right\rangle$
(a). Find a parametric equation for the tangent line to the curve $\mathbf{r}_{1}(t)$ at the point $(0,2,1)$.
(b). The curve $\mathbf{r}_{1}(t)$ intersects with $\mathbf{r}_{2}(s)=\left\langle\ln s^{3}, s^{2}+1, s\right\rangle$ at the point $(0,2,1)$. Find the angle of intersection of the two curves at that point. [Leave your answer in terms of an inverse trigonometric function.]
(c). Find the curvature of $r_{1}(t)$ at the point $(0,2,1)$ using $\kappa=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}}$.
6. (12 pts). Given $\mathbf{r}^{\prime}(t)=\sqrt{t} \mathbf{i}+2 t \mathbf{j}+3 \mathbf{k}$ and $\mathbf{r}(1)=2 \mathbf{i}+\mathbf{j}$, find $\mathbf{r}(t)$. [Write your final answer as a single vector $\mathbf{r}(t)$.]
7. (6 pts). True or False. Clearly indicate whether the following statements are true or false.

T F $\quad \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\mathbf{0}$ only if $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$.

T $\quad \mathrm{F} \quad$ The space curve given by $\mathbf{r}(t)=\left\langle e^{t}, e^{2 t}, \cos t\right\rangle$ lies on the surface of a parabolic cylinder.
T F The arc length function is given by $\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$.
8. (10 pts). Match each of the following graphs with its equation. Also, state the name of each graph.
(a). $y=x^{2}-z^{2}$
(b). $z^{2}-y^{2}+2 x^{2}=3$
(c). $-z^{2}+y^{2}-2 x^{2}=3$
(d). $z=x^{2}+y^{2}$
(e). $x^{2}+z^{2}=y^{2}$

