Priya Richard's Activity <u>TI-89 Derivatives and Integrals</u>

Objectives

- 1. Learn how to take a derivative.
- 2. Learn how to take an integral.
- 3. Learn how to find the slope to the tangent line.
- 4. Learn how to find the area underneath a curve.

Objective #1- How to take a derivative

- After turning on the calculator, go to the [HOME] tab.
- Then to take a derivative you can access the differentiation function from

[F3, CALC] at the top of the screen. Click on the tab. The screen should look

like the picture below

- Then to differentiate click on [OPTION 1: d(differentiate]
- In the box area it should be [d(]
- Enter in the function [x^3-2x+1, x] so it look like what is represented below
- Once entered, Click [ENTER]
- It then will show the derivative of the function

T0015 A	19ebra	Calc	Other	Pramio	Clean	UP
New	Prob					Done
$=\frac{d}{d\times}$	(×3 -	2.	× + 4	ŧ)	3∙×	2 - 2
d(x^)	3-2×	+4,	×>			
MAIN		RAD	AUTO	FUN	IC	2/30

Objective #2- How to Take an Integral

• From the home page press [F3] and then navigate to 2:Integrate

• Press [ENTER] to paste the integral symbol. Then type the equation "x^2-

2x+5,x". Press [ENTER] to evaluate

• This will display the antiderivative of the function

Objective #3- How to Find the Slope of the Tangent Line

- First click on the tab [F3, CALC] and then choose option 1
 [DIFFFERENTIATE]
- Then enter into the box the function [.4x^2+1, x]
- Before click enter, after the x continue the equation by putting $[(.4x^2+1, x)]$

x=3]

• Click [ENTER] and it will give a specific number which is the slope of the tangent line

Objective #4- How to Find Area Under a Curve (i.e. how to

take a definite integral)

- To evaluate a definite integral, from the home screen press [F3] to access the calculus menu, and then navigate to 2: Integrate as before. Press [ENTER] to paste the integral symbol
- In the box enter in the equation [sin(x)²,x, 0, Π] in which the integral is bounded by 0 and 3.14
- Press [ENTER] and it will give an answer that is the area under the curve

Exercises

- 1. Find the derivative of the function $f(x) = (x+3)^2 + (x)(x+1)$
 - a. Find the slope of the tangent line to the same function in #1 when x=1.
 - b. Write the equation of the tangent line in point-slope form.
- 2. Find the integral of the function $f(x)=3x^2+2x$
 - a. Find the area under the curve bounded by x=0 and x=1
 - Explain what the value of this problem represents (hint: the answers are on the page and has something to do with the bounds).

