TI-89 Derivatives and Integrals

Objectives

1. Learn how to take a derivative.
2. Learn how to take an integral.
3. Learn how to find the slope to the tangent line.
4. Learn how to find the area underneath a curve.

Objective \#1- How to take a derivative

- After turning on the calculator, go to the [HOME] tab.
- Then to take a derivative you can access the differentiation function from [F3, CALC] at the top of the screen. Click on the tab. The screen should look like the picture below

- Then to differentiate click on [OPTION 1: d(differentiate]
- In the box area it should be [d(]
- Enter in the function $\left[x^{\wedge} 3-2 x+1, x\right]$ so it look like what is represented below
- Once entered, Click [ENTER]
- It then will show the derivative of the function

Objective \#2-How to Take an Integral

- From the home page press [F3] and then navigate to 2:Integrate

- Press [ENTER] to paste the integral symbol. Then type the equation " $\mathrm{x}^{\wedge} 2$ -
$2 \mathrm{x}+5, \mathrm{x}$ ". Press [ENTER] to evaluate

$f^{\prime}\left(x^{2} 2-2 x+5, x\right)$

This will display the antiderivative of the function

Objective \#3-How to Find the Slope of the Tangent Line

- First click on the tab [F3, CALC] and then choose option 1
[DIFFFERENTIATE]
- Then enter into the box the function $\left[.4 x^{\wedge} 2+1, x\right]$
- Before click enter, after the x continue the equation by putting $\left[\left(.4 x^{\wedge} 2+1, x\right) \mid\right.$ $\mathrm{x}=3$]
- Click [ENTER] and it will give a specific number which is the slope of the tangent line

Objective \#4-How to Find Area Under a Curve (i.e. how to

take a definite integral)

- To evaluate a definite integral, from the home screen press [F3] to access the calculus menu, and then navigate to 2: Integrate as before. Press [ENTER] to paste the integral symbol
- In the box enter in the equation $\left[\sin (x)^{\wedge} 2, x, 0, \Pi\right]$ in which the integral is bounded by 0 and 3.14
- Press [ENTER] and it will give an answer that is the area under the curve

Exercises

1. Find the derivative of the function $f(x)=(x+3)^{\wedge} 2+(x)(x+1)$
a. Find the slope of the tangent line to the same function in \#1 when $\mathrm{x}=1$.
b. Write the equation of the tangent line in point-slope form.
2. Find the integral of the function $f(x)=3 x^{\wedge} 2+2 x$
a. Find the area under the curve bounded by $x=0$ and $x=1$
b. Explain what the value of this problem represents (hint: the answers are on the page and has something to do with the bounds).

