## Basic Limits

1. $\lim _{x \rightarrow c} k=$
2. $\lim _{x \rightarrow c} x=$
$\underline{\text { Properties of Limits }}$ Suppose $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist and $k$ is a constant, then
3. $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
4. $\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)$
5. $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)$
6. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$, if $\lim _{x \rightarrow c} g(x) \neq 0$
7. $\lim _{x \rightarrow c} x^{n}=c^{n}$ for positive integer $n$

The Limit Properties on page 1 lead to the following two Properties:
8. For a polynomial function $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$,
the $\lim _{x \rightarrow c} f(x)$ can be found by
i.e $\lim _{x \rightarrow c} f(x)=$
$\underline{\text { Ex }}$ Find the following limit, if it exists $\lim _{x \rightarrow 2}\left(2 x^{3}-x+1\right)$
9. For a rational function $h(x)=\frac{f(x)}{g(x)}$ where $f(x)$ and $g(x)$ are both polynomials, the $\lim _{x \rightarrow c} h(x)$ can be found by
i.e $\lim _{x \rightarrow c} h(x)=\quad=\frac{f(c)}{g(c)}, \quad g(c) \neq 0$

Ex Find the following limit, if it exists $\lim _{x \rightarrow-1} \frac{2 x-3}{1+x^{2}}$

## $\underline{\text { Even More Special Limits and Laws }}$

10. $\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}$ for positive integer $n$
11. $\lim _{x \rightarrow c} x^{1 / n}=\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}$ for positive integer $n$ and if $n$ is even, $c \geq 0$
12. $\lim _{x \rightarrow c}[f(x)]^{1 / n}=\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$ for positive integer $n$. [In the case that $n$ is even, $f(x) \geq 0$ ]
