General

$$
n=m t \quad i=\frac{r}{m}
$$

Simple Interest

$$
I=P r t \quad S=P+I=P+\operatorname{Pr} t=P(1+r t)
$$

Periodic Compound Interest

$$
\begin{aligned}
S & =P(1+i)^{n}=P\left(1+\frac{r}{m}\right)^{m t} \\
A P Y & =\left(1+\frac{r}{m}\right)^{m}-1=(1+i)^{m}-1
\end{aligned}
$$

Continuous Compound Interest

$$
S=P e^{r t} \quad A P Y=e^{r}-1
$$

Future Value of an Ordinary Annuity

$$
S=R \cdot\left[\frac{(1+i)^{n}-1}{i}\right]
$$

Present Value of an Ordinary Annuity

$$
A=R \cdot\left[\frac{1-(1+i)^{-n}}{i}\right]
$$

Amortization Formula

$$
R=A \cdot\left[\frac{i}{1-(1+i)^{-n}}\right]
$$

Time Value of Money (TVM) Solver
Press [APPS] and select [1: Finance], then [1: TVM Solver]. You should see a screen with the following inputs.
$N=$ Number of compounding periods
$I=$ Annual interest rate as a percent
$P V=$ Present value
$P M T=$ Payment amount
$F V=$ Future value
$P / Y=$ Payments per year
$C / Y=$ Compounding periods per year
PMT: END BEGIN = When payments are made in the compounding period

Notes:

- Since we are doing ordinary annuities, the PMT option should always have END highlighted for payments being made at the end of the compounding period.
- For our problems, we will always consider the number of payments per year and the number of compounding periods per year to be the same.
- A general rule is to put a "-" in front of amounts that are leaving our possession.

Redo the following examples from class using the TVM Solver.
Ex [6.3] Suppose you graduate at age 22 and get your first job. You decide to invest $\$ 200$ at the end of each month in a retirement plan that earns 8% compounded monthly. How much will you have if you retire (early) at age 65 ?

Ex [6.3] Suppose you want $\$ 12000$ for a down payment on a home in 3 years. How much must you invest at the end of each quarter in an account that earns 4% interest compounded quarterly?

Ex [6.4] After you retire, you want to receive $\$ 2000$ at the end of each month for 25 years. What lump sum must you invest in an annuity that pays 7% compounded monthly?

Ex [6.5] Sally buys a home for $\$ 180,000$ and makes a down payment of $\$ 36,000$. She takes out a loan for the remaining amount and amortizes it with monthly payments over the next 30 years. If the interest rate is 4.8% compounded monthly, find the size of the monthly payments.

