You must show work for all problems.

1. Solve the following equations for x.
(a). $45250=50(1.03)^{4 x}$

$$
\begin{array}{r}
\frac{\ln (905)}{4 \ln (1.03)} \approx 57.580 \\
\frac{\ln (1 / 6)}{-.02}=\frac{\ln 6}{.02} \approx 89.588
\end{array}
$$

(b). $250=300-300 e^{-0.02 x}$
(c). $\log _{3}(2 x+4)=-1$
(d). $\ln x-\ln 4=3$
2. The demand function for a product is given by $p=2000 e^{-q / 4}$.
(a). At what price per unit will the quantity demanded equal 10 units?
$\$ 164.17$
(b). If the price is 89.50 per unit, how many units will be demanded, to the nearest unit.
3. $\$ 2400$ is invested for 18 months at an annual simple interest rate of 4%.
(a). How much interest will be earned? \$144
(b). What is the future value after 18 months?
$\$ 2544$
4. If you want to earn 5% annual simple interest on an investment, how much should you pay for a note that will be worth $\$ 12,000$ in 10 months?
5.
(a). Find the 72 nd term of the arithmetic sequence with first term 4 and common difference $-\frac{1}{4}$.
(b). Find the common difference of an arithmetic sequence with first term 3 and tenth term $39 . \quad d=4$
(c). Find the sum of the first 90 terms of an arithmetic sequence with the first term 7 and common difference $2 . \quad s_{90}=8640$
6. What is the future value and interest earned if $\$ 5500$ is invested for 3 years at 6%
(a). Compounded quarterly? $\quad S=\$ 6575.90, I=\$ 1075.90$
(b). Compounded continuously?
$\$ S=\$ 6584.70, I=\$ 1084.70$
7. What lump sum do parents need to deposit in an account earning 9% compounded monthly so that it will grow to $\$ 140,000$ for their daughter's college tuition in 18 years.
$\$ 27873.80$
8. How long does it take for an account containing $\$ 2000$ to be worth $\$ 5000$ if the money is invested at 4% compounded quarterly.
≈ 23 years.
9. Find the annual percentage yield for an investment at
(a). 7.5% compounded semi-annually.
7.64\%
(b). 6.8% compounded continuously. 7.04%
10. Find the future value of an ordinary annuity of $\$ 3000$ paid at the end of each quarter for 10 years, if it earns 5% compounded quarterly.
\$154, 468.67
11. You want to save $\$ 30,000$ in 3 years for a down payment on a house. If you make monthly deposits into an account paying 9% compounded monthly, what is the size of the payments that is required to meet this goal. $\$ 728.99$
12. Find the present value of an ordinary annuity of $\$ 1500$ paid at the end of each 6 -month period for 12 year if the interest rate is 8%, compounded semiannually.
$\$ 22,870.44$
13. How much is needed in an account that earns 7.2% compounded monthly in order to withdraw $\$ 1200$ at the end of each month for 20 years?
$\$ 152,410.12$
14. A recent graduate's student loans total $\$ 48,000$. If these loans are at 2.8% compounded quarterly, for 10 years, what are the quarterly payments.
15. Suppose a loan of $\$ 35,000$ with interest at 8%, compounded semiannually, is to be repaid in 2 years by making 4 semiannual payments of equal size.
(a). Develop an amortization schedule for the loan.

Period	Payment	Interest	Balance Reduction	Unpaid Balance
				35000.00
1	9642.15	1400.00	8242.15	26757.85
2	9642.15	1070.31	8571.84	18186.01
3	9642.15	727.44	8914.71	9271.30
4	9642.15	370.85	9271.30	0.00

(b). Find the total interest paid.
16. Section $9.1 \# 5,9, \& 61$
17. Find the following limits, if they exist. [You must show work.]
(a). $\lim _{x \rightarrow 2}\left(3 x^{2}-x+1\right)=11$
(b). $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-x-6}=\frac{6}{5}$
(c). $\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-3 x^{2}}{h}=6 x$
18. Find the average rate of change of $f(x)=2 x^{2}-3 x$ over the interval $[2,2.5]$.
19. Given $f(x)=x^{2}-4 x$
(a). Use the limit definition $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, to show that the derivative $f^{\prime}(x)$ is $2 x-4$.
(b). Find the instantaneous rate of change of f at $x=-3 . \quad-10$ (b). Find the slope of the tangent line at $x=-3 . \quad-10$

For the remainder of the review sheet, use the DERIVATIVE FORMULAS, not the limit definition!

20. Find the derivative of given functions.
(a). $f(x)=3 x^{4}-4 x^{2}+25 x-3$
$f^{\prime}(x)=12 x^{3}-8 x+25$
(b). $s(t)=\frac{3}{t^{4}}-\frac{5}{t^{2}}+6 \sqrt{t} \quad s^{\prime}(t)=-\frac{12}{t^{5}}+\frac{10}{t^{3}}+\frac{3}{\sqrt{t}}$
21. Find the equation of the tangent line to $y=2 x^{3}-3 x+1$ at $x=-1$.
$y-2=3(x+1) \Rightarrow y=3 x+5$
22. Find the point(s) where the graph of $f(x)=x^{4}-\frac{8}{3} x^{3}+10$ has horizontal tangent line(s).
$(0,10),(2,14 / 3)$
23. If the cost for a commodity is $C(x)=200+5 x+.04 x^{2}$ dollars, find and interpret the marginal cost at $x=10$ units. $C^{\prime}(10)=5.80$. The cost of producing 1 more unit will be approximately $\$ 5.80$.
24. Suppose that the demand for a product depends on price p according to $q=\frac{30000}{p^{2}}-\frac{3}{4}, \quad p>0$, where p is in dollars. Find and explain the meaning of the instantaneous rate of change of demand with respect to price when $p=30$.
$\left.\frac{d q}{d p}\right|_{p=30}=-2.22$. If the price changes to $\$ 31$, the quantity demanded will go down by approximately 2.22 units.
