rate is 8%, compounded semiannually.

\$22,870.44

You must show work for all problems.

1. Solve the following equations for x .	
(a). $45250 = 50(1.03)^{4x}$	$\frac{\ln(905)}{4\ln(1.03)} \approx 57.580$
(b). $250 = 300 - 300e^{-0.02x}$	$\frac{\ln(1/6)}{02} = \frac{\ln 6}{.02} \approx 89.588$
(c). $\log_3(2x+4) = -1$	$-\frac{11}{6}$
(d). $\ln x - \ln 4 = 3$	$4e^3$
2. The demand function for a product is given by $p = 2000e^{-q/4}$.	
(a). At what price per unit will the quantity demanded equal 10 units?	\$164.17
(b). If the price is 89.50 per unit, how many units will be demanded, to the nearest unit.	12
3. \$2400 is invested for 18 months at an annual <i>simple</i> interest rate of 4%.	
(a). How much interest will be earned? \$144 (b). What is the future value after	18 months? \$2544
4. If you want to earn 5% annual simple interest on an investment, how much should you pay for a \$12,000 in 10 months?	a note that will be worth $\$11,520$
5.	
(a). Find the 72nd term of the arithmetic sequence with first term 4 and common difference $-\frac{1}{4}$.	$a_{72} = -13.75$
(b). Find the common difference of an arithmetic sequence with first term 3 and tenth term 39.	d = 4
(c). Find the sum of the first 90 terms of an arithmetic sequence with the first term 7 and common	a difference 2. $s_{90} = 8640$
6. What is the future value and interest earned if $$5500$ is invested for 3 years at 6%	
(a). Compounded quarterly? $S = $6575.90, I = 1075.90 (b). Compounded continuously?	S = 6584.70, I = 1084.70
7. What lump sum do parents need to deposit in an account earning 9% compounded monthly so that for their daughter's college tuition in 18 years.	t it will grow to \$140,000 \$27873.80
8. How long does it take for an account containing \$2000 to be worth \$5000 if the money is invequarterly.	sted at 4% compounded ≈ 23 years.
9. Find the annual percentage yield for an investment at	
(a). 7.5% compounded semi-annually. 7.64% (b). 6.8% compounded com	tinuously. 7.04%
10. Find the future value of an ordinary annuity of \$3000 paid at the end of each quarter for compounded quarterly.	10 years, if it earns 5% \$154,468.67
11. You want to save \$30,000 in 3 years for a down payment on a house. If you make monthly paying 9% compounded monthly, what is the size of the payments that is required to meet this goal	deposits into an account l. \$728.99
12. Find the present value of an ordinary annuity of \$1500 paid at the end of each 6-month period :	for 12 year if the interest

13. How much is needed in an account that earns 7.2% compounded monthly in order to withdraw \$1200 at the end of each month for 20 years? \$152,410.12

14. A recent graduate's student loans total \$48,000. If these loans are at 2.8% compounded quarterly, for 10 years, what are the quarterly payments. \$1380.00

15. Suppose a loan of \$35,000 with interest at 8%, compounded semiannually, is to be repaid in 2 years by making 4 semiannual payments of equal size.

(a). Develop an amortization schedule for the loan.

Period	Payment	Interest	Balance Reduction	Unpaid Balance
				35000.00
1	9642.15	1400.00	8242.15	26757.85
2	9642.15	1070.31	8571.84	18186.01
3	9642.15	727.44	8914.71	9271.30
4	9642.15	370.85	9271.30	0.00

(b). Find the total interest paid.

16. Section 9.1 #5, 9, & 61

17. Find the following limits, if they exist. [You must show work.]

(a). $\lim_{x \to 2} (3x^2 - x + 1) = 11$ (b). $\lim_{x \to 3} \frac{x^2 - 9}{x^2 - x - 6} = \frac{6}{5}$ (c). $\lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h} = 6x$

18. Find the average rate of change of $f(x) = 2x^2 - 3x$ over the interval [2, 2.5].

19. Given $f(x) = x^2 - 4x$

(a). Use the limit definition $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, to show that the derivative f'(x) is 2x - 4.

(b). Find the instantaneous rate of change of f at x = -3. -10 (b). Find the slope of the tangent line at x = -3. -10

For the remainder of the review sheet, use the DERIVATIVE FORMULAS, not the limit definition!

20. Find the derivative of given functions.

(a).
$$f(x) = 3x^4 - 4x^2 + 25x - 3$$
 $f'(x) = 12x^3 - 8x + 25$ (b). $s(t) = \frac{3}{t^4} - \frac{5}{t^2} + 6\sqrt{t}$ $s'(t) = -\frac{12}{t^5} + \frac{10}{t^3} + \frac{3}{\sqrt{t}}$

21. Find the equation of the tangent line to $y = 2x^3 - 3x + 1$ at x = -1. $y - 2 = 3(x+1) \Rightarrow y = 3x + 5$

22. Find the point(s) where the graph of $f(x) = x^4 - \frac{8}{3}x^3 + 10$ has horizontal tangent line(s). (0,10), (2,14/3)

23. If the cost for a commodity is $C(x) = 200 + 5x + .04x^2$ dollars, find and interpret the marginal cost at x = 10 units. C'(10) = 5.80. The cost of producing 1 more unit will be approximately \$5.80.

24. Suppose that the demand for a product depends on price p according to $q = \frac{30000}{p^2} - \frac{3}{4}$, p > 0, where p is in dollars. Find and explain the meaning of the instantaneous rate of change of demand with respect to price when p = 30. $\frac{dq}{dp}\Big|_{p=30} = -2.22$. If the price changes to \$31, the quantity demanded will go down by approximately 2.22 units.

\$3568.61

6