Math 162, Intro to Math Methods and Applications - Crawford

	Score	
	1	/5
	2	/10
	3	/5
• You may use the given formula sheet. Books or other notes (in any form) are not allowed.	4	/10
• You may use a calculator, but you must show work for credit.	5	/12
• Show all your work – partial credit may be given for written work.	6	/12
• Clearly indicate your answers.	7	/10
• Good Luck!	8	/12
Calculator Number:	9	/12
	10	/5
	11	/10
	Total	/100

1. (5 pts). Find the sum of the first 98 terms of an arithmetic sequence with first term 6 and common difference $\frac{1}{2}$.

2. (10 pts). Solve the following equations for x.

(a). $\ln(3x-4) - \ln 2 = \ln 10$

(b). $9600 = 120(1.03)^x$

3. (5 pts). If \$3200 is invested for 6 months at an annual *simple* interest rate of 4%, what is the future value after 6 months?

4. (10 pts). What is the future value if \$5,000 is invested for 4 years at 3%

(a). Compounded quarterly?

(b). Compounded continuously?

5. (12 pts). An individual deposits \$200 at the end of each month into an account that earns 7.2%, compounded monthly.

(a). How much will be in the account at the end of 5 years?

(b). If the individual wants \$25,000 in the account at the end of 5 years, how big should the monthly payments be?

6. (12 pts). Develop an amortization schedule for a loan of \$10,000 with interest at 8.5%, compounded annually, if it is to be repaid in 3 years by making 3 annual payments of equal size.

Period	Payment	Interest	Balance Reduction	Unpaid Balance
	-	-	-	10000.00
1				
2				
3				

7. (10 pts). Find the following limits, if they exist. [Show work for credit.]

(a). $\lim_{x \to -1} \frac{9 + x^2}{-2x + 5}$

(b).
$$\lim_{x \to 4} \frac{x^2 - x - 12}{x^2 - 4x}$$

(a). Step 1. Write down f(x).

(b). Step 2. Find and simplify f(x+h).

(c). <u>Step 3.</u> Find and simplify $\frac{f(x+h) - f(x)}{h}$. [Clearly show all algebraic steps.]

(d). <u>Step 4.</u> Take the limit as $h \to 0$ of $\frac{f(x+h) - f(x)}{h}$.

For the remainder of the review sheet, use the DERIVATIVE FORMULAS, not the limit definition!

- **9.** (12 pts). Given $f(x) = 2x^3 4x^2 5x 4$,
- (a). Find the derivative of f(x).

(b). Find the equation of the tangent line to f(x) at x = 3.

10. (5 pts). Find the derivative of $g(x) = \frac{5}{x^4} + 3\sqrt{x}$

11. (10 pts). The profit function for producing x units is given by $P(x) = 100x - 0.2x^2 - 5000$ in dollars. Find and interpret the marginal profit for x = 200 units.