Name: \qquad
Math 162, Intro to Math Methods and Applications - Crawford

- You may use the given formula sheet. Books or other notes (in any form) are not allowed.
- You may use a calculator, but you must show work for credit.
- Show all your work - partial credit may be given for written work.
- Clearly indicate your answers.
- Good Luck!

Calculator Number:

\square

Score	
1	$/ 5$
2	$/ 10$
3	$/ 5$
4	$/ 10$
5	$/ 12$
6	$/ 10$
7	$/ 12$
8	$/ 10$
9	$/ 100$
10	
11	
Total	

1. (5 pts). Find the sum of the first 112 terms of an arithmetic sequence with first term 4 and common difference $\frac{1}{2}$.
2. (10 pts). Solve the following equations for x.
(a). $6000=250(1.07)^{x}$
(b). $\ln (2 x-1)-\ln 3=\ln 9$
3. (5 pts). If $\$ 1800$ is invested for 6 months at an annual simple interest rate of 8%, what is the future value after 6 months?
4. (10 pts). What is the future value if $\$ 10,000$ is invested for 2 years at 5%
(a). Compounded quarterly?
(b). Compounded continuously?
5. (12 pts). An individual deposits $\$ 150$ at the end of each month into an account that earns 8.4%, compounded monthly.
(a). How much will be in the account at the end of 6 years?
(b). If the individual wants $\$ 20,000$ in the account at the end of 6 years, how big should the monthly payments be?
6. (12 pts). Develop an amortization schedule for a loan of $\$ 30,000$ with interest at 5.5%, compounded annually, if it is to be repaid in 3 years by making 3 annual payments of equal size.

Period	Payment	Interest	Balance Reduction	Unpaid Balance
	-	-	-	30000.00
1				
2				
3				

7. (10 pts). Find the following limits, if they exist. [Show work for credit.]
(a). $\lim _{x \rightarrow-1} \frac{-3 x+3}{x^{2}+4}$
(b). $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}+3 x-10}$
8. (12 pts). Given $f(x)=4-3 x^{2}$, use the limit definition $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, to show that the derivative $f^{\prime}(x)$ is $-6 x$. To help with this process complete the following steps:
(a). Step 1. Write down $f(x)$.
(b). Step 2. Find and simplify $f(x+h)$.
(c). Step 3. Find and simplify $\frac{f(x+h)-f(x)}{h}$. [Clearly show all algebraic steps.]
(d). Step 4. Take the limit as $h \rightarrow 0$ of $\frac{f(x+h)-f(x)}{h}$.

For the remainder of the review sheet, use the DERIVATIVE FORMULAS, not the limit definition!
9. (12 pts). Given $f(x)=2 x^{4}-3 x^{2}-2 x-10$,
(a). Find the derivative of $f(x)$.
(b). Find the equation of the tangent line to $f(x)$ at $x=2$.
10. $(5 \mathrm{pts})$. Find the derivative of $g(x)=\frac{2}{x^{3}}+4 \sqrt{x}$
11. (10 pts). The profit function for producing x units is given by $P(x)=80 x-0.1 x^{2}-7000$ in dollars. Find and interpret the marginal profit for $x=500$ units.

