1. Given that $x=5 \tan \theta$, sketch right triangle involving θ and label all the sides. Then determine expressions for all 6 trigonometric functions of θ.

$$
\begin{array}{lr}
\sin \theta= & \csc \theta= \\
\cos \theta= & \sec \theta= \\
\tan \theta=\frac{x}{5} & \cot \theta=
\end{array}
$$

2. Given the following information, sketch and label a right triangle involving θ.

In each case, write down the resulting radical expression $(\sqrt{ })$ that appears on one of the sides.
Given
Triangle
Radical Expression $(\sqrt{ })$
(a). $x=a \sin \theta$
(b). $x=a \tan \theta$
(c). $x=a \sec \theta$
(d). $x=\frac{a}{b} \sin \theta$
(e). $x=\frac{a}{b} \tan \theta$
(f). $x=\frac{a}{b} \sec \theta$
3. [Do together as class.] Consider a circle with radius a, i.e. $x^{2}+y^{2}=a^{2}$.
(a). Sketch the top half of this circle in the $x y$-plane. Shade the area bounded by this semi-circle and the x-axis.
(b). What is the equation (function) for this top half of the circle.
$y=$
(c). Set up, but do not evaluate, the integral to find the area of this shaded region.
(d). Evaluate the integral in part (c).

Table of Trigonometric Substitutions:

$$
\begin{array}{ll}
\text { Expression } & \text { Substitution } \\
\cline { 1 - 2 } \sqrt{a^{2}-x^{2}} & \\
\sqrt{a^{2}-b^{2} x^{2}} & \\
\\
\sqrt{a^{2}+x^{2}} & 1-\sin ^{2} \theta=\cos ^{2} \theta \\
\sqrt{a^{2}+b^{2} x^{2}} & 1+\tan ^{2} \theta=\sec ^{2} \theta \\
\sqrt{x^{2}-a^{2}} & \\
\sqrt{b^{2} x^{2}-a^{2}} & \sec ^{2} \theta-1=\tan ^{2} \theta
\end{array}
$$

