Given the graph of $f(x) = \sin x$, is it one-to-one?

By definition of inverse functions:

i.e. $\sin^{-1} x$ returns the number between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.

$$\underline{\mathbf{Ex}} \, \sin^{-1} \left(-\frac{\sqrt{3}}{2} \right) =$$
 NOT

 $\underline{\mathbf{Ex}} \ \operatorname{arcsin}\left(\tan\frac{\pi}{4}\right) =$

CANCELLATION EQUATIONS

- $\sin^{-1}(\sin x) = x \qquad \text{if} \qquad$
- $\sin(\sin^{-1}x) = x \qquad \text{if} \qquad$

 $\mathbf{E}\mathbf{x}$

 $\underline{\mathbf{Ex}}\sin\left(\sin^{-1}\frac{1}{2}\right) =$

 $\underline{\mathbf{E}}\mathbf{x}\,\sin^{-1}\left(\sin\frac{\pi}{4}\right) = \qquad \qquad \text{OR} \qquad \sin^{-1}\left(\sin\frac{\pi}{4}\right) =$

$$\sin^{-1}\left(\sin\frac{5\pi}{4}\right) \neq$$
BUT

OR
$$\sin\left(\sin^{-1}\frac{1}{2}\right) =$$

 $\sin^{-1}\left(\sin\frac{5\pi}{4}\right) =$

for $y \in$

Similarly for $f(x) = \cos x$, restrict the domain to

CANCELLATION EQUATIONS

 $\cos^{-1}(\cos x) = x$

PROPERTIES OF INVERSES

 $\cos(\cos^{-1} x) = x \qquad \text{if } -1 \le x \le 1$

Similarly for $f(x) = \tan x$, restrict the domain to

if

Domain: Range:

CANCELLATION EQUATIONS

 $\tan^{-1}(\tan x) = x \qquad \text{if} \qquad$

 $\tan(\tan^{-1} x) = x$ if $-\infty \le x \le \infty$

[See book for graphs of $\sec^{-1}(x)$, $\csc^{-1}(x)$, and $\cot^{-1}(x)$]

PROPERTIES OF INVERSES