Given the graph of $f(x)=\sin x$, is it one-to-one?

By definition of inverse functions:
for $y \in$
i.e. $\sin ^{-1} x$ returns the number between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x.
$\underline{\text { Ex }} \sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=$
NOT
$\underline{\mathbf{E x}} \arcsin \left(\tan \frac{\pi}{4}\right)=$

Cancellation Equations
$\sin ^{-1}(\sin x)=x \quad$ if
$\sin \left(\sin ^{-1} x\right)=x \quad$ if
$\underline{\mathbf{E x}} \sin ^{-1}\left(\sin \frac{\pi}{4}\right)=$ OR $\quad \sin ^{-1}\left(\sin \frac{\pi}{4}\right)=$
$\underline{\text { Ex }} \sin ^{-1}\left(\sin \frac{5 \pi}{4}\right) \neq$
BUT
$\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)=$
$\underline{\text { Ex }} \sin \left(\sin ^{-1} \frac{1}{2}\right)=$
OR $\quad \sin \left(\sin ^{-1} \frac{1}{2}\right)=$

Similarly for $f(x)=\cos x$, restrict the domain to

Domain:
Range:

Cancellation Equations

Properties of Inverses

$\cos ^{-1}(\cos x)=x \quad$ if
$\cos \left(\cos ^{-1} x\right)=x \quad$ if $-1 \leq x \leq 1$

Similarly for $f(x)=\tan x$, restrict the domain to

Domain:
Range:

Cancellation Equations

Properties of Inverses
$\tan ^{-1}(\tan x)=x \quad$ if
$\tan \left(\tan ^{-1} x\right)=x \quad$ if $-\infty \leq x \leq \infty$

