Ex Suppose $T=f(x)$ represents the temperature in a rod a position x. Suppose we take a temperature measurement and want to know the position based on that temperature.
ie. x is now a function of . Mathematically:

Def A function g is the Inverse Function of the function f if

Notation: The inverse function is denoted by Important:

So to show that 2 functions are inverses of each other, you must show that the definition is satisfied, i.e.:
(1). Both cancelation equations are satisfied:
(2). The domain and range must interchange: ie.

Ex Verify the $f(x)=\frac{1}{\sqrt{x-2}}$ has the inverse $f^{-1}=\frac{1}{x^{2}}+2$.
(And find the domain and range of both.)

Since the domain and range interchange \Longrightarrow If the point (a, b) is on f, then the point is on f^{-1}.

Ex Use this fact to sketch the inverse of $f(x)$.

Will a function f always have an inverse function?
If not, how can we tell?
Ex Given the graph of $f(x)=x^{2}+1$ below, sketch its reflection through the line $y=x$. Is the reflection a function?

Def A function is called ONE-TO-ONE if

Ex Determine whether the following functions will have an inverse.

Steps for finding and inverse of $f(x)$
Ex Find the inverse function of $f(x)=\sqrt{2 x-3}$
$\mathbf{0}$. Verify that an inverse exists.

1. Write $y=f(x)$.
2. Solve for x in terms of y (if possible).
3. Interchange x and y and write $y=f^{-1}(x)$.
4. Define $\operatorname{dom}\left(f^{-1}\right)$ as the range of f.
