1. Given $f(x)=\sin x+2 \cos x, \quad-\frac{\pi}{4} \leq x \leq 0$, find $\left(f^{-1}\right)^{\prime}(a)$ for $a=2 . \quad$ Ans: $\left(f^{-1}\right)^{\prime}(2)=1 \quad$ Note: $f^{-1}(2)=0$
2. Solve for x :
(a). $e^{3 x-7}=6 \quad x=\frac{7+\ln 6}{3}$
(b). $\ln (x+1)-\ln x=1 \quad x=\frac{1}{e-1}$
3. Given $f(x)=\ln (\cos x+2)$
(a). What is the domain of f ? Domain: all real
(b). Find the relative extreme values on the interval $[-1,1] . \quad$ [Indicate max or min.] Max value of $\ln 3$ at $x=0$
4. Evaluate the following integrals.
(a). $\int_{0}^{1} \frac{1}{4-2 x} d x=-\left.\frac{1}{2} \ln |4-2 x|\right|_{0} ^{1}=\frac{1}{2} \ln 2$
(d). $\int \sec (5 x) d x=\frac{1}{5} \ln |\sec (5 x)+\tan (5 x)|+C$
(b). $\int e^{-7 x}-\frac{7 \ln x}{x} d x=-\frac{1}{7} e^{-7 x}-\frac{7}{2}(\ln x)^{2}+C$
(e). $\int_{0}^{\int_{0}^{\ln 2} \frac{e^{3 x}+1}{e^{x}} d x=\frac{1}{2} e^{2 x}-\left.e^{-x}\right|_{0} ^{2}=2}$ Simplify using log./exp. properties.
(c). $\int \frac{3 x^{2}+2 x}{x^{3}+x^{2}+1} d x=\ln \left|x^{3}+x^{2}+1\right|+C$
(f). $\int \frac{\tan x}{\ln (\cos x)} d x=-\ln |\ln (\cos x)|+C$
5. Given the function $f(x)=e^{-x^{2}}$
(a). Evaluate $\lim _{x \rightarrow-\infty} e^{-x^{2}}=0$
(b). Evaluate $\lim _{x \rightarrow+\infty} e^{-x^{2}}=0$
(c). Find $f^{\prime}(x)$
$f^{\prime}(x)=-2 x e^{-x^{2}}$
6. What is the formula for $\log _{a} x$ in terms of the natural logarithmic function?

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

7. Differentiate the following functions:
(a). $y=x^{4}-4^{x}+e^{4 x}+\ln 4 x$
(c). $y=\pi^{x}-\ln e^{x} \quad y^{\prime}=\pi^{x} \cdot \ln \pi-1$
$y^{\prime}=4 x^{3}+4^{x} \cdot \ln 4+4 e^{4 x}+\frac{1}{x}$
(b). $y=x^{\frac{1}{x}} \quad y^{\prime}=\frac{1}{x^{2}}(1-\ln x) \cdot x^{1 / x}$
(d). $h(\theta)=3 \ln \left(\frac{2+\cos \theta}{\theta^{2}}\right)$
$h^{\prime}(\theta)=\frac{-3 \sin \theta}{2+\cos \theta}-\frac{6}{\theta}$
8. Find the equation of the tangent line to $y=\log _{3} x$ at $x=1$

$$
y=\frac{1}{\ln 3}(x-1) .
$$

9. (a). Find the maximum area of a rectangle in the first quadrant with 2 sides on the x - and y-axes and one vertex on the curve $y=e^{-x}$. See the figure below. [Hint: Express the area of such a rectangle in terms of x only.]
Maximize $A=x y$ subject to $y=e^{-x}$
$\Longrightarrow x=1$. So max area $=\frac{1}{e}$

(b). Sketch the picture for a rectangle in the first quadrant with 2 sides on the x - and y-axes and one vertex on the curve $y=e^{x}$. Without using Calculus, determine whether there exists such a rectangle with a maximum area. Briefly explain (a couple of sentences) why or why not. No, if you draw the picture you will see that you can always create a bigger rectangle by taking x further out.
10. Given that a population follows the law of exponential growth, $y(t)=C e^{k t}$ where y is the population and t is time in years.
(a). Find the proportional constant k, if the population triples every 50 years.

$$
k=\frac{\ln 3}{50}
$$

(b). If the population is 100 after 5 years, find the population at time t.

$$
y=\frac{100}{\sqrt[10]{3}} e^{\frac{\ln 3}{50} t}=89.60 e^{.02197 t}
$$

11. Find the following limits. Clearly show all steps and indicate where you use L'Hopital's Rule.
(a). $\lim _{x \rightarrow 0} \frac{\sin 4 x}{2 x}=2$
(b). $\lim _{x \rightarrow \infty}(1+x)^{\frac{1}{x}}=1$
(c). $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-3 x+2}=1$
(d). $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-3 x-2}=0$
