

- Calculators, books, notes (in any form), cell phones, and any unauthorized resources are <u>not</u> allowed.
- You may use the given unit circle.
- Clearly indicate your answers.
- Show all your work partial credit may be given for written work.
- Evaluate trigonometric, exponential, and logarithmic expressions for standard values.
- Problems #2, 4(a), and 8(a) will be used to compute extra credit for Quiz 1.
- Good Luck!

Formulas that you may or may not find helpful

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$
$$\int \csc x \, dx = \ln |\csc x - \cot x| + C$$

$$\frac{d}{dx} \left[a^x \right] = a^x \cdot \ln a \qquad \qquad \frac{d}{dx} \left[\log_a x \right] = \frac{1}{x \ln a} \qquad \qquad \int a^x \, dx = \frac{a^x}{\ln a} + C$$

Score	
1	/8
2	/12
3	/8
4	/16
5	/10
6	/10
7	/14
8	/24
Total	/100

1. (8 pts). Solve the following equation for x.

 $\ln(2x+1) + \ln x = 0$

2. (12 pts). Given $f(x) = \frac{1}{2}x^3 + x - 1$, find $(f^{-1})'(5)$ using the formula $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$. [Do <u>not</u> attempt to find f^{-1} .]

3. (8 pts). A population grows according to the model $p(t) = p_0 e^{kt}$ where p is the population at time t in years. After 3 years, the populations has grown by 24%. Find the relative growth rate k. [You do not need a calculator. Leave you answer exact and you do <u>not</u> need to simplify.]

4. (16 pts). Differentiate the following functions.

[Do <u>not</u> simplify.]

(a).
$$y = \frac{xe^{-x^2}}{5-2x}$$

(b). $h(t) = \ln \sqrt{t} - \log_4 3t$

5. (10 pts). Find the equation of the tangent line to $y = 2 \cdot 3^x$ at x = 2.

[Simplify values.]

6. (10 pts). Use Logarithmic Differentiation to find y' in terms of x only for

 $y = x^{\cos x}$

7. (14 pts). Evaluate the following limits.

(a).
$$\lim_{x \to 0} \frac{e^{4x} - 1 - 4x}{x^2}$$

(b). $\lim_{x\to 0} (1-x)^{3/x}$

8. (24 pts). Evaluate the following integrals.

(a).
$$\int \frac{\pi}{e^{\pi x}} dx$$

(b).
$$\int x \sec(x^2) dx$$

(c).
$$\int_0^\pi \frac{\sin x}{2 + \cos x} \, dx$$

[Simplify.]