Name:
Exam 1
Math 152, Calculus II - Crawford

- Calculators, books, notes (in any form), cell phones, and any unauthorized resources are not allowed.
- You may use the given unit circle.
- Clearly indicate your answers.
- Show all your work - partial credit may be given for written work.
- Evaluate trigonometric, exponential, and logarithmic expressions for standard values.
- Problems \#2, 4(a), and 8(a) will be used to compute extra credit for Quiz 1.
- Good Luck!

Formulas that you may or may not find helpful
$\int \sec x d x=\ln |\sec x+\tan x|+C$
$\int \csc x d x=\ln |\csc x-\cot x|+C$

Score	
1	$/ 8$
2	$/ 12$
3	$/ 8$
4	$/ 16$
5	$/ 10$
6	$/ 14$
7	$/ 24$
8	$/ 100$
Total	

$\frac{d}{d x}\left[a^{x}\right]=a^{x} \cdot \ln a \quad \frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{x \ln a} \quad \int a^{x} d x=\frac{a^{x}}{\ln a}+C$

1. (8 pts). Solve the following equation for x.
$\ln (2 x+1)+\ln x=0$
2. (12 pts). Given $f(x)=\frac{1}{2} x^{3}+x-1$, find $\left(f^{-1}\right)^{\prime}(5)$ using the formula $\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}$. [Do not attempt to find f^{-1}.]
3. (8 pts). A population grows according to the model $p(t)=p_{0} e^{k t}$ where p is the population at time t in years. After 3 years, the populations has grown by 24%. Find the relative growth rate k.
[You do not need a calculator. Leave you answer exact and you do not need to simplify.]
4. (16 pts). Differentiate the following functions.
[Do not simplify.]
(a). $y=\frac{x e^{-x^{2}}}{5-2 x}$
(b). $h(t)=\ln \sqrt{t}-\log _{4} 3 t$
5. (10 pts). Find the equation of the tangent line to $y=2 \cdot 3^{x}$ at $x=2$.
6. (10 pts). Use Logarithmic Differentiation to find y^{\prime} in terms of x only for $y=x^{\cos x}$
7. (14 pts). Evaluate the following limits.
(a). $\lim _{x \rightarrow 0} \frac{e^{4 x}-1-4 x}{x^{2}}$
(b). $\lim _{x \rightarrow 0}(1-x)^{3 / x}$
8. (24 pts). Evaluate the following integrals.
(a). $\int \frac{\pi}{e^{\pi x}} d x$
(b). $\int x \sec \left(x^{2}\right) d x$
(c). $\int_{0}^{\pi} \frac{\sin x}{2+\cos x} d x$
