We now have a "bag of tools" for integrations: direct, u-substitution, integration by parts, trigonometric integrals, trig substitution, etc.

But there are still lots of integrals for which we still have no method.
eg. $\int e^{x^{2}} d x$
$\int_{-1}^{1} \sqrt{1+x^{3}} d x$

$$
d=\int_{0}^{3} v(t) \quad \text { where }
$$

t	$v(t)$
0	0
1	10.8
2	15.7
3	29.6

Recall, the Definition of a Definite Integral
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x$
Take the limit off and we have an approximation using n rectangles.

3 Choices for the Rectangles:

- Left Endpoint: $\int_{a}^{b} f(x) d x \approx L_{n}=\sum_{i=0}^{n-1} f\left(x_{i}\right) \cdot \Delta x=\Delta x \cdot\left[f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)\right]$
- Right Endpoint: $\int_{a}^{b} f(x) d x \approx R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x=\Delta x \cdot\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right]$
- Midpoint: $\int_{a}^{b} f(x) d x \approx M_{n}=\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \cdot \Delta x=\Delta x \cdot\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right]$
where \bar{x}_{i} is the midpoint of the $i^{\text {th }}$ subinterval. i.e. $\bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2}$

But approximations with rectangles have errors because flat tops are used to approximate a changing curve .

So to reduce error, use slanted tops \Rightarrow Each section approximated with a trapezoid

Trapezoid Rule:
$\int_{a}^{b} f(x) d x \approx T_{n}=\frac{1}{2} \Delta x\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$

Although error typically reduced, still using straight lines to approximate curved tops

So to reduce error, use (curved) parabolas to approximate the top of each section

$\int_{a}^{b} f(x) d x \approx S_{n}=\frac{1}{3} \Delta x\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$

