Directions for using the TI-83/84 to compute sums

- Change your calculator to the sequence mode:
 - Type [MODE]
 - Use the arrow keys to move to the fourth line and highlight Seq and press [ENTER]
 - Type [2nd] [QUIT]
- Go to the List Menu by typing [2nd] [LIST]
 - Choose the **Math** submenu
 - Choose option **5**: **sum** (to paste this command in the home screen.
- Go to the List Menu by typing [2nd][LIST]
 - Choose the **OPS** submenu
 - Choose option 5: seq (to paste this command in the home screen.
 You should see sum (seq (on your home screen.
- Enter the terms that you want to sum.
 The syntax is sum (seq (sequence_def, variable, first_value_of_n, last_value_of_n))

Enter the following exactly as shown **sum(seq(1/n^2, n, 1, 10))** [ENTER]

This should return the value 1.549767731

Enter this value in the table.

This will compute the following: $\sum_{n=1}^{10} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \frac{1}{81} + \frac{1}{100}$

To avoid re-typing all of this each time you change the *last_value_of_n* or the *sequence_def*, use the **[ENTRY]** button as follows:

- Type [2nd] [ENTRY] and this will paste your last entry into the home screen.
 [i.e. You should now see sum(seq(1/n², n, 1, 10)) again on the home screen.]
 - Use the arrow keys to place your cursor over the 0 in the 10.
 - Type [2nd] [INSERT] [0] to insert another zero to make 100. Press [ENTER] Now it will compute $\sum_{n=1}^{100} \frac{1}{n^2}$. Enter the resulting value in the table.
 - Repeat this process to change the *last_value_of_n* to be 500 and 999 and enter the resulting sums in the table.

```
[Notes:
```

The more terms you sum, the longer it will take – be patient.

The TI-83 will only let you compute up to 999 terms otherwise you will get an error.

If you get see ERR: OVERFLOW that means the number computed is too big for the calculator. Enter option 1:Quit and move on.]

- Type [2nd] [ENTRY] and this will paste your last entry into the home screen.
 - Use the arrow keys and the [DEL] and [2nd] [INS] buttons to change the line to be sum (seq(1/n,n,1,10))
 - Repeat the steps above to compute the sums for *last_value_of_n* =10, 100, 500, 999

Repeat the process as necessary to compute the sums for all of the sequences given in the lab.

Here is the syntax for each sum in the lab ($last_value_of_n = 10$) (pay attention to parentheses).

Series/Sun:
$$\sum_{n=1}^{10} \frac{1}{n^2}$$
 sum (seq (1/n^2, n, 1, 10)) (for sequence: $a_n = \frac{1}{n^2}$)
Series/Sun: $\sum_{n=1}^{10} \frac{1}{n}$ sum (seq (1/n, n, 1, 10)) (for sequence: $a_n = \frac{1}{n}$)
Series/Sun: $\sum_{n=1}^{10} \frac{1}{\sqrt{n}}$ sum (seq (1/ $\sqrt{(n)}$, n, 1, 10)) (for sequence: $a_n = \frac{1}{\sqrt{n}}$)
Series/Sun: $\sum_{n=1}^{10} \left(\frac{1}{2}\right)^n$ sum (seq (.5^n, n, 1, 10)) (for sequence: $a_n = \left(\frac{1}{2}\right)^n$)
Series/Sun: $\sum_{n=1}^{10} \left(-\frac{1}{2}\right)^n$ sum (seq (.5^n, n, 1, 10)) (for sequence: $a_n = \left(-\frac{1}{2}\right)^n$)
Series/Sun: $\sum_{n=1}^{10} \left(-\frac{1}{2}\right)^n$ sum (seq (.5^n, n, 1, 10)) (for sequence: $a_n = \left(-\frac{1}{2}\right)^n$)
Series/Sun: $\sum_{n=1}^{10} 2^n$ sum (seq (.7, n, 1, 10)) (for sequence: $a_n = 2^n$)
Series/Sun: $\sum_{n=1}^{10} \frac{n}{n+1}$ sum (seq (n/(n+1), n, 1, 10)) (for sequence: $a_n = \frac{n}{n+1}$)
Series/Sun: $\sum_{n=1}^{10} \frac{n}{n^2+1}$ sum (seq (n/(n^2+1), n, 1, 10)) (for sequence: $a_n = \frac{n}{n^2+1}$)
Series/Sun: $\sum_{n=1}^{10} \frac{n}{n^2+1}$ sum (seq (3, n, 1, 10)) (for sequence: $a_n = 3$)