Let's expand the idea from the last worksheet to find a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ to represent a generic function $f(x)$
In other words, given $f(x)$ find the coefficients $c_{0}, c_{1}, c_{2}, \ldots$ so that

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+\cdots
$$

Start by differentiating the above expression. That is, find the derivatives of $f(x)$ and differentiate the power series. Then evaluate them both at at $x=0$.

$$
\begin{array}{rlrl}
f(x) & =c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+\cdots & f(0) & =c_{0} \\
f^{\prime}(x) & =c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+5 c_{5} x^{4}+\cdots & f^{\prime}(0) & = \\
f^{\prime \prime}(x) & =2 c_{2}+2 \cdot 3 c_{3} x+3 \cdot 4 c_{4} x^{2}+4 \cdot 5 c_{5} x^{3}+\cdots & f^{\prime \prime}(0) & = \\
f^{\prime \prime \prime}(x) & =2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} x+3 \cdot 4 \cdot 5 c_{5} x^{2}+\cdots & f^{\prime \prime \prime}(0) & = \\
& & \\
f^{(i v)}(x) & =2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} x+\cdots & f^{(i v)}(0) & = \\
\vdots & & f^{(n)}(0) & =
\end{array}
$$

Remember $f(x)$ is given (i.e. known) and hence
$f(0), f^{\prime}(0), f^{\prime \prime}(0), \ldots, f^{(n)}(0)$ \qquad .

So the only unknown in equation $f^{(n)}(0)=n!c_{n}$ is \qquad .

Lucky for us, the coefficients c_{n} are exactly what we set out to find. Solve:

Repeat the process for a power series centered at $x=a$.
In other words, given $f(x)$ find the coefficients $c_{0}, c_{1}, c_{2}, \ldots$ so that

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+\cdots
$$

Start by finding the derivatives and evaluating them at $x=a$.

$$
\begin{aligned}
f(x) & =c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+\cdots & f(a)=c_{0} \\
f^{\prime}(x) & =c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+5 c_{5}(x-a)^{4}+\cdots & f^{\prime}(a)= \\
f^{\prime \prime}(x) & =2 c_{2}+2 \cdot 3 c_{3}(x-a)+3 \cdot 4 c_{4}(x-a)^{2}+4 \cdot 5 c_{5}(x-a)^{3}+\cdots & f^{\prime \prime}(a)= \\
f^{\prime \prime \prime}(x) & =2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4}(x-a)+3 \cdot 4 \cdot 5 c_{5}(x-a)^{2}+\cdots & f^{\prime \prime \prime}(a)= \\
& & f^{(i v)}(a)= \\
f^{(i v)}(x) & =2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5}(x-a)+\cdots & \\
\vdots & & f^{(n)}(a)=
\end{aligned}
$$

Remember $f(x)$ and a are given (i.e. known) and hence
$f(a), f^{\prime}(a), f^{\prime \prime}(a), \ldots, f^{(n)}(a)$ \qquad .

So the only unknown in equation $f^{(n)}(a)=n!c_{n}$ is \qquad .

Lucky for us, the coefficients c_{n} are exactly what we set out to find. Solve:

