In the following problems, you will try to approximate functions $f(x)$ using a polynomial $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+$ $c_{5} x^{5}+\cdots+c_{n} x^{n}$.

The $1^{\text {st }}-5^{\text {th }}$ derivatives of a general polynomial are given below. [Make sure you see this.]
$\underline{\text { Evaluate the polynomial and its derivatives at } x=0 .}$ The $c_{n}$ 's are just constants.

$$
\begin{array}{rlrl}
p(x) & =c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+\cdots+c_{n} x^{n} & p(0)=c_{0} \\
p^{\prime}(x) & =c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+5 c_{5} x^{4}+\cdots+n c_{n} x^{n-1} & p^{\prime}(0)= \\
p^{\prime \prime}(x) & =2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+20 c_{5} x^{3}+\cdots+n(n-1) c_{n} x^{n-2} & p^{\prime \prime}(0)= \\
p^{\prime \prime \prime}(x) & =6 c_{3}+24 c_{4} x+60 c_{5} x^{2}+\cdots+n(n-1)(n-2) c_{n} x^{n-3} & p^{\prime \prime \prime}(0)= \\
p^{(i v)}(x) & =24 c_{4}+120 c_{5} x+\cdots+n(n-1)(n-2)(n-3) c_{n} x^{n-4} & p^{(i v)}(0)= \\
p^{(v)}(x) & =120 c_{5}+720 c_{6} x+\cdots+n(n-1)(n-2)(n-3)(n-4) c_{n} x^{n-5} & p^{(v)}(0)=
\end{array}
$$

Use the results of this polynomial and its derivatives evaluated at $x=0$ for the next 2 problems.

This page is intentionally blank

1. Given the function $f(x)=\frac{1}{1-x}=(1-x)^{-1}$ and its 1 st -5 th derivatives, evaluate them at $x=0$.

From page 1, also include your results for the the general polynomial $p(x)$ and its derivatives evaluated at $x=0$.
$f(x)=(1-x)^{-1}$
$=\frac{1}{1-x}$
$f(0)=1$
$p(0)=c_{0}$
$f^{\prime}(x)=-(1-x)^{-2} \cdot(-1)=(1-x)^{-2} \quad=\frac{1}{(1-x)^{2}}$
$f^{\prime}(0)=$
$p^{\prime}(0)=$
$f^{\prime \prime}(x)=-2(1-x)^{-3} \cdot(-1)=2(1-x)^{-3} \quad=\frac{2}{(1-x)^{3}}$
$f^{\prime \prime}(0)=$
$p^{\prime \prime}(0)=$
$f^{\prime \prime \prime}(x)=-6(1-x)^{-4} \cdot(-1)=6(1-x)^{-4} \quad=\frac{6}{(1-x)^{4}}$
$f^{\prime \prime \prime}(0)=$
$p^{\prime \prime \prime}(0)=$
$f^{(i v)}(x)=-24(1-x)^{-5} \cdot(-1)=24(1-x)^{-5} \quad=\frac{24}{(1-x)^{5}}$
$f^{(i v)}(0)=$
$p^{(i v)}(0)=$
$f^{(v)}(0)=$
$p^{(v)}(0)=$
(a). Find $c_{0}$ so that $p(x)$ and $f(x)$ match at $x=0$
i.e. Set $f(0)=p(0)$ and solve for $c_{0}$.

Find $c_{2}$ so that the second derivatives match at $x=0$ i.e. Set $f^{\prime \prime}(0)=p^{\prime \prime}(0)$ and solve for $c_{2}$.

Find $c_{4}$ so that the fourth derivatives match at $x=0$ i.e. Set $f^{(i v)}(0)=p^{(i v)}(0)$ and solve for $c_{4}$.

Find $c_{1}$ so that the first derivatives match at $x=0$ i.e. Set $f^{\prime}(0)=p^{\prime}(0)$ and solve for $c_{1}$.

Find $c_{3}$ so that the third derivatives match at $x=0$ i.e. Set $f^{\prime \prime \prime}(0)=p^{\prime \prime \prime}(0)$ and solve for $c_{3}$.

Find $c_{5}$ so that the fifth derivatives match at $x=0$ i.e. Set $f^{(v)}(0)=p^{(v)}(0)$ and solve for $c_{5}$.
(b). Use the coefficients found in part (a) to write down the resulting polynomial up to $x^{5}$.
i.e Write down $c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}$ since we're claiming $f(x) \approx p(x)$.
$\frac{1}{1-x} \approx \quad \longleftarrow$ fill in polynomial
(c). What do you notice about all of the coefficients $c_{i}$ so far?

Use this observation to write down an infinite (power) series that will match the function up to all (infinitely many) derivatives.
$\frac{1}{1-x}=\sum_{n=}^{\infty}$
(d). Replace the $x$ with an $r$ in the above equation:
$\frac{1}{1-r}=$
This series and formula should look familiar - what is it?
For what values of $r$ (and ultimately $x$ ) does it converge?
(e). Graph the function $f(x)=\frac{1}{1-x}$ and the polynomial $p(x)$ from part (b) on the same screen.

Use the viewing window $[-3,3] \times[-3,3]$ and sketch the polynomial on the graph below.
From the graph,
How well does the polynomial approximate $f(x)$ near $x=0$ ?

How well does it approximate $f(x)$ for $|x|<1$ ?

How well does it approximate $f(x)$ for $|x|>1$ ?

2. Repeat the process for the function $f(x)=\sin x$, but you must take the derivatives yourself.

The results of general polynomial evaluated at $x=0$ from page 1 is already included.

$$
\left.\left.\begin{array}{rlrl}
f(x) & =\sin x & f(0) & = \\
f^{\prime}(x) & = & p(0) & =c_{0} \\
f^{\prime \prime}(x) & = & f^{\prime}(0) & = \\
f^{\prime \prime \prime}(x) & = & f^{\prime \prime}(0) & = \\
f^{\prime}(0) & =c_{1} \\
f^{(i v)}(x) & = & f^{\prime \prime \prime}(0) & = \\
f^{(v)}(x) & = & f^{(i v)}(0) & = \\
f^{\prime \prime}(0) & =2 c_{2} \\
& f^{(v)}(0) & = & p^{\prime \prime \prime}(0)
\end{array}\right)=6 c_{3}\right\}
$$

(a). Using the above information, find the values of the coefficients $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$, and $c_{5}$ so that that $f(x)$ and $p(x)$ match up to their 5 th derivatives.
(b). Write down the resulting polynomial up to $x^{5}$ and simplify.
i.e Write down $c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}$ since we're claiming $f(x) \approx p(x)$.
$\sin x \approx$
$\longleftarrow$ fill in polynomial
(c). Graph $f(x)=\sin x$ and the polynomial $p(x)$ from part (b) on your Calculator.

Use the viewing window $-\pi \leq x \leq \pi$ and $-3 \leq y \leq 3$.
Sketch the polynomial onto the sine curve below.


How good does the polynomial approximate the sine function near $x=0$ ?

