

Area of a sector of a circle

$$
A_{\text {sector }}=
$$

Find the area inside the

polar curve $r=f(\theta)$

$$
\text { for } \alpha \leq \theta \leq \beta
$$

Divide the θ-interval into n subintervals and approximate the area of each section using sectors of a circle:
$\Delta \theta=$
and θ_{i}^{*}
$A_{i}=$

Add up all the areas: $\quad A \approx \sum_{i=1}^{n} A_{i}=$

Take the limit as $n \rightarrow \infty: \quad A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}$

For the area between two polar curves:

$A=($ Area inside $f)-($ Area inside $g)$

