Ex Given $x=\frac{3}{t^{2}+1}$ and $y=t-1$
Graph the curve on your calculator for $-5 \leq t \leq 5$.
Use a viewing window $-2 \leq x \leq 4$ and $-4 \leq y \leq 4$.
Sketch a copy on the axes to the right.
Then answer the questions below.
(a). Does this curve represent a function? Why or why not?

(b). Could you draw tangent lines to this curve? If so, sketch the tangent line at the point $\left(\frac{3}{2}, 0\right)$.

Give an estimate of the slope of the tangent line that you just drew.
(c). Based on part (b), does it make sense to talk about the derivative $\frac{d y}{d x}$ (or slope) of this curve?

Note: This is the derivative of y with respect to x.

So given $x=x(t)$ and $y=y(t)$ how do we find $\frac{d y}{d x}$?

Solution: Suppose we could eliminate t and write \qquad $(*), \quad$ then $\frac{d y}{d x}=$ \qquad
But $y=y(t)$ and $x=x(t)$, so $(*)$ becomes

$$
y(t)=
$$

Differentiate w/ respect to t:

$$
\frac{d}{d t}[y(t)]=\frac{d}{d t}[F(x(t))]
$$

Recall, from $(* *), \quad \frac{d y}{d x}=F^{\prime}(x) \quad \Rightarrow$
In Leibniz Notation:
[Note: Formula is still valid even if we can't eliminate t and write $y=F(x)$.]
$\underline{\text { Ex }}$ Given $x=\frac{3}{t^{2}+1}$ and $y=t-1$
(a). Find $\frac{d y}{d x}$.
(b). Find the slope of the tangent line to the curve at the point $\left(\frac{3}{2}, 0\right)$.
(c). Find the equation of the tangent line to the curve at the point $\left(\frac{3}{2}, 0\right)$.
(d). Graph this tangent line on your calculator along with the original curve to verify that it is, in fact, the correct tangent line. [Hint: Remember you need to write the tangent line as a parametric curve.]
(e). Find the equation of the tangent line to the curve at the point corresponding to $t=0$.

Can we find $2^{n d}$ derivatives? i.e. How do we find $\frac{d^{2} y}{d x^{2}}$?

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left[\frac{d y}{d x}\right] \\
& =\frac{d}{d x}\left[y^{\prime}\right] \\
& =\frac{d\left(y^{\prime}\right)}{d x}
\end{aligned}
$$

but y^{\prime} is parametrically defined (e.g. function of t), so use the formula from p. 1 replacing y with y^{\prime}.
$\underline{\mathbf{E x}} x=\cos 5 t, \quad y=\sin 5 t$
(a). Find $\frac{d y}{d x}$.
(b). Find $\frac{d^{2} y}{d x^{2}}$.

Ex

$$
x=t^{3}-6 t^{2}, \quad y=t^{3}-12 t
$$

(a). Find the points on the curve where the tangent is horizontal or vertical.
(b). For what values of t is the curve increasing or decreasing?
(c). Use the information obtained in parts (a) and (b) to help sketch the curve on the axes below.

