1. Find the $\underline{\mathbf{S U M}}$ of the following series or show that it diverges.
(a). $\sum_{n=1}^{\infty}\left(\frac{1}{n}+(-1)^{n}\right)$
(b). $\sum_{n=0}^{\infty} \frac{3^{n-1}}{5^{n+2}}$
(c). $\sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)$
(d). $\sum_{n=1}^{\infty} \frac{3^{2 n}}{4^{n}}$
2. Given $\sum_{n=1}^{\infty} \frac{4}{n^{3}}$
(a). Find the 3rd partial sum s_{3}.
(b). If s_{3} is used to approximate the infinite series, what is the bound for the maximum possible error? (i.e. bound on $\left|R_{3}\right|$?)
(c). How many terms are needed for error to be less than 0.001 .
3. Determine whether the following series converge or diverge. Show all your work and clearly indicate any tests that you use.
(a). $\sum_{n=1}^{\infty} \frac{5 n^{2}+n}{3-2 n^{2}}$
(d). $\sum_{n=1}^{\infty} \frac{(n!)^{2} 3^{n}}{(2 n)!}$
(b). $\sum_{n=1}^{\infty} \frac{5 \sqrt{n}+1}{3+2 n^{2}}$
(e). $\sum_{n=1}^{\infty}\left(\frac{n}{2 n-1}\right)^{3 n}$
(c). $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
(f). $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$
[More practice can be found in Section 11.7 and the Chapter 11 Review.]
4. Does $\sum_{n=2}^{\infty}(-1)^{n-1} \frac{1}{\ln n}$ converge absolutely, converge conditionally, or diverge.
5. Given $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+4}$
(a). Find the 5 th partial sum s_{5}.
(b). If s_{5} is used to approximate the infinite series, what is the bound for the maximum possible error? (i.e. bound on $\left|R_{5}\right|$?)
(c). How many terms are needed for error to be less than 0.001 .
6. Find the interval and radius of convergence for the following series.
(a). $\sum_{n=1}^{\infty} \frac{3^{n} x^{n}}{n^{n}}$
(b). $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n}$
(c). $\sum_{n=1}^{\infty} \frac{(2 x+4)^{n}}{n 4^{n}}$
7. Find the radius of convergence for the following series.
(a). $\sum_{n=0}^{\infty} \frac{(3 x-2)^{n}}{n}$
(b). $\sum_{n=0}^{\infty} \frac{n^{n} x^{n}}{n!}$
8. Use a known power series to find a power series representation for the $f(x)=\frac{1}{1+3 x^{2}}$.
